CCSS Objectives: Students will define the domains of simplified rational expressions to make them equivalent to the originals. Teacher will ensure students can answer the BIG Idea: Are a rational expression and its simplified form equivalent. A.APR.7 A.CED.1 & 2 F.IF.9 A.REI.2 & 11
Enrichment Think About It: We just finished logarithms; we are starting Equivalent equations; Are we able to combine the two mathematics concepts? 9.5: p. 518 #41-43p.519 #54 & #55p :Example 3 p. 523
Adding _1_ + _ 1_ 2x 2x
Adding _d – 3_ + _d – 1_ 2d + 1
Adding ___1____ + ___1____ x 2 + 5x + 4 3x + 3
Adding ___1______ + _ 3x___ x 2 – 4x – 12 4x + 8
Adding 5y x – 4 xy 2 4xy
Adding __5x__ + __2__ x 2 – 9 x + 4
Adding _-3x_ + __4__ x 2 – 9 2x - 6
Adding __5x____ + __4______ x 2 – x – 6 x 2 + 4x + 4
Add 1) __3__ + __x__ x + 1 x – 1 2) __4__ + __7__ x 2 – 9 x - 3
Subtracting -2_ - _1_ x x
Subtracting _-5y_ - _y + 3_ 2y – 1 2y - 1
Subtracting __7y____ - __4___ 5y 2 – 125 3y + 15
Subtracting ____-2________ - __3x__ 3x x x + 30
Subtracting ____x_____ - __2x + 1__ 3x 2 – 9x + 6 3x 2 + 3x - 6
Subtracting __y__ - __3__ 2y + 4 y + 2
Subtracting __x__ - __8___ 3x + 9 x 2 + 3x
Subtracting __3y__ - ___8___ y 2 – 25 y - 5
Subtracting ___2x____ - ____4 X ___ X 2 – X – 2 X 2 – 3 X + 2
Subtract: 1) _2x__ - 1_ x 2 – 1 x 2 2) x + 2 – x – 3__ x – 1 2x + 1
Subtract 1) ___5x____ - 4____ x 2 – x – 6 x 2 + 4x + 4
Simplifying Complex Fractions 1 _x_ y
Simplifying Complex Fractions 3___ 1 - 1_ 2y
Simplifying Complex Fractions x____ y
Simplifying Complex Fractions x – 2 - 2__ _ x____x + 1 3__ - __1__ x – 1 x + 1
Simplifying Complex Fractions 1 _ x__ 2 y
Simplifying Complex Fractions __2__ _x + y___ 3
Simplifying Complex Fractions 1___ 1 + x y
Simplifying Complex Fractions 3___ 2 + y x
Simplifying Complex Fractions 2__ x + y _ 5__ x + y
Simplifying Complex Fractions -3___ 5 + y x