Ghil-Seok Yang, Hyun-Chul Kim NTG (Nuclear Theory Group), Inha University, Inha University, Incheon, Korea 1. 2. G. S. Yang, H.-Ch. Kim, [arXiv:hep-ph/1010.3792,

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

Soliton spectroscopy, baryonic antidecuplet
Kernfysica: quarks, nucleonen en kernen
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
August 2005Michal Praszalowicz, Krakow1 quarks Michal Praszalowicz Jagellonian University Krakow, Poland at ISMD
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
29 June 2004Steve Armstrong - Searches for Pentaquark Production at LEP1 Searches for Pentaquark Production at LEP Steve Armstrong (ALEPH Collaboration)
Branching Ratios of B c Meson Decaying to Vector and Axial-Vector Mesons Rohit Dhir Department of Physics, Yonsei University, Seoul, Korea. Dated:21-Sept-2012.
Ghil-Seok Yang, Yongseok Oh, Hyun-Chul Kim NTG (Nuclear Theory Group), (Nuclear Theory Group), Inha University Inha University HEP (Center for High Energy.
Successes and problems of chiral soliton approach to exotic baryons
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Istanbul06 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Hadron spectroscopy, Heavy pentaquark, and.
Rencontres de Moriond 2005 Chiral soliton model predictions for pentaquarks Rencontres de Moriond 2005 Michał Praszałowicz - Jagellonian University Kraków,
Strange Pentaquarks Michał Praszałowicz
NEW NARROW NUCLEON N*(1685)  Prediction of narrow N*  “Neutron anomaly” in eta photoproduction  Possible interpretations  Evidence for narrow N* (1685)
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
Structure of strange baryons Alfons Buchmann University of Tuebingen 1.Introduction 2.SU(6) spin-flavor symmetry 3.Observables 4.Results 5.Summary Hyperon.
Eightfold Way (old model)
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
29/03/04A. Geiser, Recent Spectroscopy Results from ZEUS 1 Recent Spectroscopy Results from the (H1 and) ZEUS Experiments nSelected main topic: evidence/search.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Munich, June 16th, 2010Exotic gifts of nature1 XIV International Conference on Hadron Spectroscopy J. Vijande University of Valencia (Spain) A. Valcarce,
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
HIM SHLee 1 1.Introduction for Exotics 2.Hadron production in HIC 3.Exotics from RHIC Hadron Physics at RHIC Su Houng Lee Yonsei Univ., Korea Thanks.
Workshop on “Extractions and interpretations of hadron resonances and multi-meson production reactions with 12 GeV upgrade”, May 27-28, 2010 Cascade Baryons:
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
Lecture 12: The neutron 14/10/ Particle Data Group entry: slightly heavier than the proton by 1.29 MeV (otherwise very similar) electrically.
S-Y-05 S.H.Lee 1 1.Introduction 2.Theory survey 3.Charmed Pentaquark 4.Charmed Pentaquark from B decays Physics of Pentaquarks Su Houng Lee Yonsei Univ.,
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Measurement of high lying nucleon resonances and search for missing state in double charged pion electroproduction off proton E.Golovach for the CLAS collaboration.
New Narrow Nucleon Resonance N*(1685) „Neutron anomaly“ in eta photoproduction: GRAAL, CB/TAPS, LNS-Tohoku Interpretations of the neutron anomaly Evidence.
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
1 Keitaro Nagata, Chung-Yuan Christian University Atsushi Hosaka, RCNP, Osaka Univ. Structure of the nucleon and Roper Resonance with Diquark Correlations.
June 16-20, 2005 北京 1 Atsushi Hosaka (RCNP, Osaka Univ) Decay and production of  + hep-ph/ , PRD71: (2005) A. H., M. Oka and T. Shinozaki.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Pentaquarks: Discovering new particles
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
1 Longitudinal and transverse helicity amplitudes of nucleon resonances in a constituent quark model - bare vs dressed resonance couplings Introduction.
Quark Nuclear Physics or A theory of baryon resonances at large N c Dmitri Diakonov, Victor Petrov and Alexey Vladimirov Petersburg Nuclear Physics Institute,
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Alfons Buchmann Universität Tübingen Introduction
Strange Tribaryons as Nona-quarks Yuu Maezawa (Univ. Tokyo) Tetsuo Hatsuda (Univ. Tokyo) Shoichi Sasaki (RIKEN BNL) hep-ph/
U-spin and the Radiative decay of Strange Baryons K. Hicks and D.Keller EM Transition Form Factor Workshop October 13, 2008.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Photoproduction of Cascade baryons Yongseok Oh (UGA) H. Haberzettl (GWU) K. Nakayama (UGA) nucl- th/
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Exotic baryons: predictions, postdictions and implications Hanoi, August 8 Maxim V. Polyakov Petersburg NPI & Liege University Outline: - predictions.
DPyC 2007Roelof Bijker, ICN-UNAM1 An Unquenched Quark Model of Baryons Introduction Degrees of freedom Unquenched quark model Closure limit; Spin of the.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
On a possibility of baryonic exotica
Search for exotic baryon resonances in pp collisions at the CERN SPS
A novel probe of Chiral restoration in nuclear medium
Section IX - Quark Model of Hadrons
d*, a quark model perspective
how is the mass of the nucleon generated?
Dmitri Diakonov Petersburg Nuclear Physics Institute
s, pentaquarks or excited heavy baryons, or both?
Theory on Hadrons in nuclear medium
Presentation transcript:

Ghil-Seok Yang, Hyun-Chul Kim NTG (Nuclear Theory Group), Inha University, Inha University, Incheon, Korea G. S. Yang, H.-Ch. Kim, [arXiv:hep-ph/ , hep-ph/ ] 2. G. S. Yang, H.-Ch. Kim, M. V. Polyakov, Phys. Lett. B 695, p214, Jan, (2011) 3. G. S. Yang, H.-Ch. Kim, Prog. Theor. Phys. Suppl. No. 186 pp (2010) 4. G. S. Yang ph.D Thesis 4. G. S. Yang, ph.D Thesis, 2010 (unpublished), Ruhr-Universität, Bochum, Germany

SU(3) baryons ( exotic states ) SU(3) baryons ( exotic states ) Motivation ( Θ +, N * ) Motivation ( Θ +, N * ) Chiral Soliton Model Chiral Soliton Model Mass splittings [Mass splittings] Vector Transitions [Vector Transitions] - Magnetic Moments - Transition Magnetic Moments - Radiative Decay Widths Axial-Vector Transitions [Axial-Vector Transitions] - Axial-vector Coupling Constants - Decay Widths Summary Summary

Naïve Quark Model Naïve Quark Model (up, down, strange light quarks): SU(3) scheme to classify particles with the same spin and parity Fundamental Particles ? SU(2) SU(3) multiplets (proton, neutron) : isospin [ SU(2) ] → higher symmetry (Σ, K,···) : SU(3) Hadron [ baryon (qqq), meson (qq) ] : SU(3) color singlet Why not 4, 5, 6, … quark states ? representation 10* (10) Nothing prevents such states to exist Y. s. Oh and H. c. Kim, Phys. Rev. D 70, (2004)

Θ , Diakonov, Petrov, and Polyakov : Narrow 5-quark resonance (q 4 q : Θ + ) ( M = 1530, Γ ~ 15 MeV from Chiral Soliton Model ) ( uddss ) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+3/2 Ξ0Ξ0Ξ0Ξ03/2 Ξ-Ξ-Ξ-Ξ-3/2 Ξ --3/2 Σ-Σ-Σ-Σ-10 Σ0Σ0Σ0Σ010 Σ+Σ+Σ+Σ+10 ( uudss ) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10) S = -1 S = -2

Successful searches for Θ + (2003~2005) : 2007 PDG Successful searches for Θ + (2003~2005) : 2007 PDG

Unsuccessful searches for Θ + (2006~2008) : 2010 PDG Unsuccessful searches for Θ + (2006~2008) : 2010 PDG ??? ? New positive experiments ( ) ■ DIANA 2010 ( Θ + ) : M = 1538±2, Γ= 0.39±0.10 MeV (K + n → K 0 p, higher statistical significance : 6σ - 8σ) LEPS, SVD, KEK [confirmed by LEPS, SVD, KEK, …] ■ GRAAL (N* ) : M = 1685±0.012 MeV, CBELSA/TAPS, LNS-Sendai ( CBELSA/TAPS, LNS-Sendai, …) (uddss) T3T3 1 Θ + Θ + ( uudds ) ½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 (uudss) p * p * ( uud ) n * ( udd ) n * Y S = 1 S = 0 Anti-decuplet Anti-decuplet (10)

Mass splittings of baryons : crucial ! → model parameters : vector and axial-vector properties → model parameters : vector and axial-vector properties in particular, the effect of SU(3) symmetry breaking in particular, the effect of SU(3) symmetry breaking Problems in the previous solitonic approaches D.P.PE.K.PχQSM Considered Effects H SU(3) H. Input Masses [MeV] N * N * (1710) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2) Σ πN [MeV] 4573Predicted → 41 Results I 2 [ fm ] m s α [MeV] m s β [MeV] m s γ [MeV] c Γ Θ+ [MeV] 15 for sym11.1 for sym0.71 for sym D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, (1997) E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, & Nucl. Phys. A

: Effective and relativistic low energy theory : Large N c limit : meson field → soliton : Quantizing SU(3) rotated-meson fields → Collective Hamiltonian, model baryon states Chiral Soliton Model Hedgehog Ansatz : Collective quantization SU(2) Witten imbedding into SU(3): SU(2) X U(1)

Octet (8) Octet (8) : J p = 1/2 + Decuplet Decuplet (10) : J p = 3/2 + Y T3T3 Y Y T3T3 1 N NN N Ξ ΞΞ Ξ Λ Σ0Σ0Σ0Σ Δ ΔΔ Δ Σ*Σ*Σ*Σ* Ξ*Ξ*Ξ*Ξ* Ω-Ω-Ω-Ω- n ( udd ) n p p ( uud ) Ξ - ( dss)Ξ - Ξ 0 Ξ 0 ( uss ) Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ ½ Mass Δ - ( ddd )Δ - Δ ++ Δ ++ ( uuu ) Δ0Δ0Δ0Δ0 Δ+Δ+Δ+Δ+ Ω - Ω - ( sss ) Ξ*-Ξ*-Ξ*-Ξ*- Ξ*0Ξ*0Ξ*0Ξ*0 Σ*-Σ*-Σ*-Σ*- Σ*0Σ*0Σ*0Σ*0 Σ*+Σ*+Σ*+Σ*+ -½½ -3/ Mass SU(3) flavor symmetry breaking + Isospin symmetry breaking + Collective Hamiltonian for flavor symmetry breakings

★ In order to take fully into account the masses of the baryon octet as input, it is inevitable to consider the breakdown of isospin symmetry. ★ Two sources for the isospin symmetry breaking 1. mass differences of up and down quarks (hadronic part) 2.Electromagnetic interactions (EM part)

Δ M B = M B 1 – M B 2 = ( Δ M B ) H + ( Δ M B ) EM B(p) k p p p - k EM mass corrections Electromagnetic (EM ) self-energy EM [MeV]Exp. (p – n) EM 0.76±0.30 ΣΣ (Σ + – Σ - ) EM -0.17±0.30 ΞΞ (Ξ 0 –Ξ - ) EM -0.86±0.30 ( p – n ) exp ~ – MeV ( p – n ) EM ~0.76 MeV n ( udd ) n p p ( uud ) T3T3 Ξ - ( dss)Ξ - Ξ 0 Ξ 0 ( uss ) Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ 1 ½ 1 Y Gasser, Leutwyler, Phys.Rep 87, 77 “Quark Masses”

In the ChSM, It can be further reduced to Because of Bose symmetry G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)

Weinberg-Treiman formula M EM (T 3 ) = αT βT 3 + γ Dashen ansatz ΔM EM ~ κT 3 2 ~ κ’Q 2

Coleman-Glashow Coleman-Glashow relation EM [MeV] Exp. Exp. [input] (M p – M n ) EM0.76±0.30 (M Σ+ – M Σ - ) EM-0.17±0.30 (M Ξ 0 –M Ξ - ) EM-0.86±0.30

EM [MeV] Exp. Exp. [input]reproduced (M p – M n ) EM0.76± ±0.22 (M Σ+ – M Σ - ) EM-0.17± ±0.23 (M Ξ 0 –M Ξ - ) EM-0.86± ±0.28 Coleman-Glashow Coleman-Glashow relation Χ 2 fit

[ D.W.Thomas et al.] [ PDG, 2010 ] [ GW, 2006 ] [ Gatchina, 1981 ] Physical mass differences of baryon decuplet ■ Physical mass differences of baryon decuplet

Two advantages offered by the model-independent approach in the χSM by the model-independent approach in the χSM. model-parameters 1. the very same set of dynamical model-parameters allows us to calculate the physical observables of all SU(3) baryons regardless of different SU(3) flavor representations of baryons, namely octet, decuplet, antidecuplet, and so on. model-parameters 2. these dynamical model-parameters can be adjusted to the experimental data of the baryon octet which are well established with high precisions. Mass : α, β, γ (for ) Mass : α, β, γ (for octet, decuplet, antidecuplet,…) Vector transitions : w i (i=1,2,…,6) Axial transitions : a i (i=1,2,…,6) [10], [10] Baryons l = l 0 (1 + c ΔT) : linear expansion coefficient of a wire, c [8] model-parameters

Mass splittings within a Chiral Soliton Model Mass splittings within a Chiral Soliton Model Formulae for Baryon Octet Masses (ΔM) EM (ΔM) H hadronic mass part in terms of δ 1 and δ 2

Formulae for Baryon Decuplet Masses hadronic mass part in terms of δ 1 and δ 2

Formulae for Baryon Anti-Decuplet Masses hadronic mass part in terms of δ 3

Generalized Gell-Mann-Okubo ■ Generalized Gell-Mann-Okubo relation When the effect of the isospin sym. br is turned off, Coleman-Glashow ■ Coleman-Glashow relation is still satisfied Present analysis reproduces all kind of well-known mass relations ★ Generalized Guadagnini formulae

Baryon octet masses

Employing the value of the ratio 74±12 [Using Θ + & Ξ -- masses, based on χQSM: Σ πN =(74±12) MeV, P. Schweitzer, Eur. Phys. J. A 22, 89 (2004)] 64±8 [GWU analysis of πN scattering data : Σ πN =(64±8) MeV, Pavan et al, PiN Newslett.16: ,2002 ] 79±7 [Updated analysis in the pχQM : Σ πN =(79±7) MeV, Inoue, et al, Phys. Rev. D (2004) ]

Baryon decuplet masses

Baryon antidecuplet masses

magnetic transitions The full expression for the magnetic transitions μ BB’ = μ BB’ (0) + μ BB’ (op) + μ BB’ (wf) Vector transitions with

2. Magnetic transitions

Magnetic moments for baryon decuplet (in units of μ N ) 2. Magnetic transitions mass splitting analysis

Magnetic moments for baryon antidecuplet (in units of μ N ) 2. Magnetic transitions

|μ NΔ |~3.1 Exp. 1.61±0.08 <0.82 Transition magnetic moments (in units of μ N ) isospin asymmetry mass splitting analysis

2. Magnetic transitions Partial decay widths of the radiative decays (in units of keV) Consistent with GRAAL data - “Narrow nucleon resonance N* (1685) has much stronger photocoupling to the n than to the p” - Good agreement with estimates for non-strange members of antidecuplet N* from Chiral Soliton Model - Being a candidate for the non-strange member Θ + of the anti-decuplet supports the existence of the Θ + T3T3 1 +Θ++Θ+ ½-½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 Y n* n* n* n* p* p* p* p* [ Kuznetsov, Polyakov, T. Boiko, J.Jang, A. Kim, W. Kim,, H.S. Lee, A. Ni, G. S. Yang, Acta. Phys. Polon. B 39, 1949 (2008) ]

Axial-vector transitions with The full expression for the axial-vector transitions g 1 BB’ = g 1 BB’ (0) + g 1 BB’ (op) + g 1 BB’ (wf)

Axial-vector transitions a 1 = ± 0.01 a 2 = 3.12 ± 0.03 a 3 = 0.62 ± 0.13 a 4 = 2.91 ± 0.07 a 5 = ± 0.03 a 6 = ± 0.04

Axial-vector transitions 84.7± ±0.29 Γ Θ + n = 0.80±0.12 MeV Γ Θ + N = 2 Γ Θ + n = 1.61±0.25 MeV DIANA 2010 ( Θ + ) : Γ= 0.38±0.11 MeV PDG 2007 ( Θ + ) : Γ= 0.9±0.3 MeV Γ Θ + N (0) = 0.52±0.13 MeV Γ Θ + N (op) = 1.31±0.07 MeV Γ Θ + N (wf) = 0.36±0.01 MeV

D.P.PE.K.PχQSMThis Work Analyzed Effects H SU(3) H. EMHH EM + iso H. + SU(3) H. Input Masses [MeV] N * N * (1710) Θ + Θ + (1539±2) Ξ -- Ξ -- (1862±2) Θ + Θ + (1524±0.005 LEPS) N * N * (1685±0.012 GRAAL) Σ πN [MeV] 4573Predicted (41)Predicted (72.0±13.6) Results I 2 [ fm ] m s α [MeV] m s β [MeV] m s γ [MeV] c g K*n Θ : sym 1.95 : sym Γ Θ+ [MeV] 15 : sym 11.1 : sym ±0.25 D.P.P : Diakonov, Petrov, Polyakov, Z. Physics. A. 359, (1997) E.K.P : Ellis, Karliner, Praszalowicz, JHEP. 0405, 002 (2004) χQSM : Tim Ledwig, H.-Ch. Kim, K. Goeke, Phys. Rev. D. 78, & Nucl. Phys. A Γ Θ+ : 0.38±0.11 MeV (DIANA), 0.9±0.3 MeV (2007 PDG)

T3T3 1 +Θ++Θ+ ½-½-½ 2 Ξ+Ξ+Ξ+Ξ+ 3/2 Ξ0Ξ0Ξ0Ξ0 3/2 Ξ-Ξ-Ξ-Ξ- 3/2 Ξ -- 3/2 Σ-Σ-Σ-Σ- 10 Σ0Σ0Σ0Σ0 10 Σ+Σ+Σ+Σ+ 10 Y Chiral Soliton Model Chiral Soliton Model : “model-independent approach” ● Mass splittings : SU(3) and isospin symmetry breakings with EM → No Free Parameter ! ● Masses, magnetic moments (8, 10) Magnetic transitions and decay widths (8, 10) → very good agreement with experimental data ● M Θ+ = 1524 MeV [LEPS, DIANA], M N* = 1685 MeV [GRAAL] used as input, : reliable value within a chiral soliton model ● Γ Θ+ = 1.61±0.25 MeV [DIANA 2010 : 0.38±0.11]. small decay width is reproduced ● The study for the mass splittings to the 2 nd order : done [ hep-ph , Yang & Kim] Consequent results will appear elsewhere n* n* n* n* p* p* p* p*

Спасибо Thank you ありがとうございます 감사합니다 Danke schön 謝謝 TERIMA KASIH

Mixing coefficients Mixings of baryon states

1. Electric transitions Gell-Mann-Nishijima relation

Octet, Decuplet Anti-decuplet ( Θ +, N *) Parameters to be fixed: 1. Experimental data for the all masses of the baryon octet 2. Experimental values for the Σ* → I 1 3. Experimental values for the Θ + & N* Input for fixing the parameters ( χ 2 fitting)

Moment of inertia The ratio of current quark masses χ 2 fitting from the octet mass formulae ( Gasser, Leutwyler : R = 43.5±2.2) J. Gasser & H. Leutwyler, Phys. Rept. 87, 77 (1982) & PDG 2008 More complete analysis gives us more information

Flavor SU(3) breaking: The Ademollo-Gatto Theorem 1. Electric transitions Mixing coefficients from mass splittings

1. Electric transitions

Vector transitions with Sachs’ form factor f E (q 2 ) = f 1 (q 2 ) + f 2 (q 2 ) [q 2 /(2M N ) 2 ] f M (q 2 ) = f 1 (q 2 ) + f 2 (q 2 ) n p pp p T3T3 Ξ-Ξ-Ξ-Ξ- Ξ0 Ξ0Ξ0 Ξ0 Σ-Σ-Σ-Σ- Σ+Σ+Σ+Σ+ Λ Σ0Σ0Σ0Σ0 -½ 1 ½ 1 Y

Model baryon state Constraint for the collective quantization : Mixings of baryon states

Mixing coefficients

δN *δN *δN *δN *

η, π, K Pseudoscalar meson ( η, π, K ) photoproduction γ n → K - Θ + : “missing resonances” ( γ n → K - Θ + ) γ n → η n Narrow resonant structure W ~ 1.67 – 1.68 GeV on γ n → η n GRAAL, LNS-Tohoku (2007) γ p → η p Beam asymmetry ( Σ on γ p → η p ) → amplify weak signal of a resonance Analysis of mass spectrum on n target is rather complicated (bound in deuteron) ● : Kuznetsov (GRAAL, 2008) ○ : Bartalini (GRAAL, 2007)

Breit-Wigner formula for electro- & magnetic multipoles where Reparametrized Breit-Wigner formula

● : ηn spectrum (CBELSA/TAPS) : ηn spectrum estimated with resonance : ηn spectrum estimated without resonance ▲ : ηp spectrum ( GRAAL, CBELSA/TAPS, CLAS ) P 11 additional to non-resonant contribution ( inputs : M R = 1685, Γ R = 20 MeV, θ = 130 o ) Fit the “Breit-Wigner form” with SAID data to the exp. data (GRAAL : Σ on p) – Photocoupling ratio (n / p) ~ 10 – 20 CSM Good agreement with estimates for non-strange members of antidecuplet N* from CSM Best Fit : P 11 ( M R ~ 1685, Γ R ~ 20 MeV )