The BAIKAL Neutrino Telescope: Results and Plans 19 th ERCS, Florence, Italy,September 3 rd, 2004 Ralf Wischnewski DESY-Zeuthen.

Slides:



Advertisements
Similar presentations
Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
10/7/2003C.Spiering, VLVNT Workshop1. 10/7/2003C.Spiering, VLVNT Workshop2  With the aim of constructing a detector of km3 scale in the Northern hemisphere,
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
IceCube Galactic Halo Analysis Carsten Rott Jan-Patrick Huelss CCAPP Mini Workshop Columbus OH August 6, m 2450 m August 6, 20091CCAPP DM Miniworkshop.
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)
BAIKAL-GVD: status, results and plans Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Amsterdam, October 17,
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
The Baikal Experiment - Status, Results and Perspectives Zh. Dzhilkibaev for the Baikal Collaboration.
A Device for Detection of Acoustic Signals from Super High Energy Neutrinos Presenter: Presenter: G.L.Pan'kov Applied Physics Institute of Irkutsk State.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, International.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
Dark Matter Searches with AMANDA and IceCube Catherine De Clercq for the IceCube Collaboration Vrije Universiteit Brussel Interuniversity Institute for.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
Imaging the Neutrino Universe with AMANDA and IceCube
Status of the Baikal-GVD experiment
Status of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow),
Julia Becker for the IceCube collaboration
An expected performance of Dubna neutrino telescope
The Antares Neutrino Telescope
Performance of the AMANDA-II Detector
Brennan Hughey for the IceCube Collaboration
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
Brennan Hughey for the IceCube Collaboration
Presentation transcript:

The BAIKAL Neutrino Telescope: Results and Plans 19 th ERCS, Florence, Italy,September 3 rd, 2004 Ralf Wischnewski DESY-Zeuthen

R.Wischnewski ECRS HE Neutrino Detection: Muons and “Cascades” O(km) long muon tracks direction determination by Cherenkov light timing  5-15 m - Good directionality by Cherenkov timing - Poor energy resolution Charged Current (CC)  Electromagnetic & hadronic cascades ~ 5 m - Good energy resolution - Bad pointing CC e  + Neutral Current

The case for “All flavor” detection (1) - Oscillation transfers the canonical e :  :  = 1: 2: 0 at source (e.g. from  +- decay) to e :  :  = 1: 1: 1 at earth  50 % of signal  are ‘lost’ !  Catch all flavours (2) Earth is opaque for ‘upward’ at E >> PeV. But:  regenerate via  -decay and pile up at transparency E-threshold, i.e. do not ‘disappear’.

The case for >1 Uw/Ice - Telescopes (1) Complete sky coverage Lake Baikal South Pole Sky coverage in Gal.Coordinates = galactic center South Pole (AMANDA) Lake Baikal (and Mediterranean...) Visibility: below local horizon - white = 100% visibility - black = „blind region“

The case for >1 Uw/Ice - Telescopes (1) Complete sky coverage Lake Baikal South Pole (2) Complementarity of detectors –Optical medium: scattering vs. no-scatt. –Effective volume: contained vs. external –Pattern recognition & filtering criteria

R.Wischnewski ECRS NT-200 design + history -Results: - Atm. Neutrinos, WIMPs, Monoples, - Cascades  AP neutrinos, muons -Physics upgrade to NT-200+ to be finished in April 2005 Outline

R.Wischnewski ECRS Collaboration Russia – Germany - Institute of Nuclear Research, Moscow - Moscow State University - DESY Zeuthen - Irkutsk State University - Nishni Novgorod State Technical University - State Marine Technical University, St.Petersburg - Kurchatov Institute, Moscow - JINR, Dubna ~45 authors

The Site 4 cables x 4km to shore. 1070m depth 3600 m 1366 m NT-200

Ice as a natural deployment platform Ice stable for 6-8 weeks/year: –Maintenance & upgrades –Test & installation of new equipment –Operation of surface detectors (EAS, acoustics,… ) Winches used for deployment operations 

R.Wischnewski ECRS The Ice Camp (4km offshore)

R.Wischnewski ECRS The NT-200 Telescope -8 strings: 72m height optical modules - pairwise coincidence  96 space points - calibration with N-lasers - timing ~ 1 nsec - Dyn. Range ~ 1000 pe Effective area: 1 TeV ~2000 m² Eff. shower volume: 10TeV ~0.2Mt Quasar PMT: d = 37cm Height x  = 70m x 40m, V geo =10 5 m 3 = 0.1Mton

R.Wischnewski ECRS Optical Module – Pair (Coincidence)

R.Wischnewski ECRS m long arms allow for separate String manipulation 8 Strings on a Heptagon frame d=40m N.B.: Flexiblity - additional (external) strings can be deployed independently (and re-positioned) at any place.

R.Wischnewski ECRS NT-36, April and retrieval one year later. Final deployment of the Heptagon …

Abs. Length: 22 ± 2 m Scatt. Length (geom) ~ m  cos  ~ In-situ measurements over many years 2001: Cross calibration with NEMO/ANTARES L att -device Baikal, nm Absorption cross section, m -1 Scattering cross section, m -1 FreshWater  no K40 BG Optical Properties

R.Wischnewski ECRS Baikal - History Since 1980 – Site tests and early R&D started 1989/90 - Proposal NT-200, start construction NT – NT-36 started (36 PMTs at 3 strings)  The First Underwater Array ever built  3-dimensional Muon reconstruction  Verify BG-suppression & check MC/Water/..  First 2 Neutrino Candidates NT-200 commissioned – NT-200 commissioned (192 PMTs at 8 strings)  Start full Physics program since 1998: Routine operation 4-string stage (1996) One of the first neutrino events recorded with the 1996 four-string version NT-96 of the Telescope

R.Wischnewski ECRS Photoelectrons Amplitude (Chan 12) Time difference (dt = t 52 -t 53 )  t, ns Atmospheric muons: Calibration Beam A i, t i atm.  Reconstructed  ’s : Cos(zenith) distribution vs. Corsika cos (  )

R.Wischnewski ECRS Selected Results - Low energy phenomena - Atmospheric neutrinos - Neutrino from WIMP annihilation - Search for exotic particles - Magnetic monopoles - High energy phenomena - Diffuse neutrino flux - Neutrinos from GRB - Prompt muons and neutrinos

R.Wischnewski ECRS Data samples NT : 502 livetime days (Apr.98-Feb.00) : 780 livetime days (Apr.98-Feb.01) ( this work ) : in progress - earlier results: for prototype NT-96,...

R.Wischnewski ECRS Atmospheric Muon-Neutrinos Skyplot (galactic coordinates)  ~ 3° BG dominated bin cos (  ) Thresh. ~ 15 GeV 3-dimensional track reconstruction high BG suppression  84 events in Soon to come: - a high statistics neutrino sample („looser criteria“) for Point-Source Search. - Muon-Neutrino GRB analysis

WIMP Neutrinos from the Center of the Earth  +   b + b  W + + W - C +  +  cos (  ) Detection area, m 2 Tailored Vertical Track Reconstruction (single string)  Effective Area > 10 3 m 2 (after all cuts)

WIMP Search Limit on excess neutrino induced upward muon flux 90% c.l. limits from the Earth ( 502 days NT-200 livetime, E  > 10 GeV ) osc. no osc. 502 days livetime NT-200 (98+99) MC: Bartol evts - experiment 36.6 evts - prediction w/o oscillations 29.7 evts - prediction w/ oscillations

R.Wischnewski ECRS Search for fast Monopoles (  Monopole limit (90% C.L.) 780 livedays Parker N hit distribution: MC  data N hit Monopole selection criteria: hit channel multiplicity: N hit > 35 ch, upward track:  (z i -z)(t i -t)/(  t  z ) > 0.45,  o Background : atmospheric muons N  monop   = n 2 (g/e) 2 N   = 8300 N   g = 137/2, n = 1.33 Bright light source: 8300 x muon

R.Wischnewski ECRS Search for Slow Massive Monopoles  (10 -5 <  -3  NT-200 – capable to detect massive bright objects (GUT-monopoles, nuclearites, Q-balls …): Monopole Trigger: N local >4 within dt=500  sec Selection: N ch >1 with N local >14 Magnetic monople Flux limit  cat         M+p M+e + (+  …),   ~10 5 Magnetic monopole visibility boundaries

Search for High Energy Cascades NT-200 is used to watch the volume below for cascades. Look for upward moving light fronts. Signal: isolated cascades from neutrino interactions Background : Bremsshowers from h.e. downward muons Final rejection of background by „energy cut“ (N hit )  („BG“) NT-200 large effective volume e cascades Allowed by excellent scatt  scatt =30-50m Radius, m

Physics topics: - HE cascades from e   - NC/CC  Diffuse astroph.flux  GRB correlated flux - HE atmospheric muons ( the „BG“ to ‘s )  Prompt   Exotic  -... Search for High Energy Cascades NT-200 is used to watch the volume below for cascades.  („BG“) NT-200 large effective volume

Hard spectra pile up in the “energy parameter” N hit    AE -  Shape of signal in N hit distribution (  Selecting HE Cascades  atm 2.5  cut Data + MC Showers along  

Diffuse Flux e, ,  Limit 90% C.L. Limit via W-RESONANCE production ( E = 6.3 PeV,  5.3 · cm 2 ) Ф e < 4.2 · (cm 2 · s · sr · GeV ) -1 (Baikal 2004) Ф e < 5.0 · (cm 2 · s · sr · GeV ) -1 (AMANDA 2004) The 90% C.L. “all flavour” Limit from NT-200 (780 days) on the DIFFUSE NEUTRINO FLUX Assuming e     = 1  1  1 at Earth ( 1  2  0 at source) + for a  =2 spectrum Ф ~ E -2 (10 TeV < E < 10 4 TeV) E 2 Ф < 1.0 ·10 -6 GeV cm -2 s -1 sr -1 (Baikal 2004) E 2 Ф < 0.86 ·10 -6 GeV cm -2 s -1 sr -1 (AMANDA-II 2004) V geo (NT-200) AMANDA II V eff > 1 Mton at 1 PeV Effective volume vs. E

Experimental limits + theoretical predictions Diffuse Flux Limits + Models Models already ruled out by the experiments SDSS - Stecker et al.92 SS - Stecker, Salamon96 SP - Szabo, Protheroe92 (Models/Exp. are rescaled for 3 flavours)  Telescopes attack Models agressively.

R.Wischnewski ECRS Search for ’s correlated with GRBs 1 PeV BATSE-GRBs vs. HE-Cascades event sample. April February 2000: N tot = 722 BATSE evts NT-200: CascadeCuts (N hit >10 & t min >-10 ns) & t BATSE -100 s < t < t BATSE +100 s Data consistent with expected  at -BG  90% C.L. differential flux limits GRB - Prospects: We expect better sensitivity for the muon event sample. Analysis in progress.

R.Wischnewski ECRS Prompt atmospheric ’s and muons BG source for neutrino telescopes Production - decays of short-lived particles (  D, …)      isotropic for E < 10 7 GeV Neutrinos -   e : cascades (CC, NC)  E -2.6, E<E b = GeV     E b 0.4 E -3, E>E b = GeV Muons: cascades (e + e -, brem, ph.-nucl.)     E -2.6 Predictions: ZHV - E.Zas, F.Halzen, R.Vazquez-93 RVS - O.Ryazhskaya, L.Volkova, O.Saavedra-02 QGSM, RQPM - E.Bugaev et al.-89 TIG - M.Thunman, G.Ingelman, P.Gondolo-96 GGV - G.Gelmini, P.Gondolo, G.Varieschi-02 (hep-ph/ ) Baikal

Any HE muon model spectrum can be tested by the selected HE Cascade event sample. Example: “Exotic Muons” as discussed in some talks at this meeting (curve “a” and “b”).  a detailed limit calculation for these “predictions” is in progress. The limit for E -2 spectrum shows we have rejection model power. Limits to HE Muon Flux Flux prediction and flux limits

Upgrade to NT Aim: Improve sensitivity to cascades with sparse instrumentation. 36 additional PMTs on 3 far ‘strings‘  4 times better sensitivity ! PeV 140 m Mton

NT Much improved cascade coordinates (+ energy ) reconstruction

NT NT as subunit for a Gton scale detector For High Energy Cascades: A single small string replacing the NT-200 central core reduces V eff less than x3 for E>100TeV.  Short strings as a subunit for a Gton scale detector 140 m

A future Gigaton (km3) Detector in Lake Baikal. Sparse instrumentation: 91 strings with 12 OM = 1308 OMs  effective volume for 100 TeV cascades ~ km³!  muon threshold between 10 and 100 TeV

NT-200+ Status 2004: - Two outer strings are installed common events taken during 364 h life time (0.017 Hz) - New cable to shore (4km underwater) - DAQ system redesigned - MBit-DSL shore connection: x100 bandwidth - Embedded Linux PC’s and Ethernet underwater (fast trigger Level 0 possible) - Remote Experiment Control from Moscow/ : - NT-200+ will be completed

R.Wischnewski ECRS NT-200+ DAQ-Upgrade, 3/2004 Linux and Ethernet “go underwater” for the new Baikal-DAQ: - 3 Baikal-spheres with first PCs ready for deployment (left) - Mounting the central trigger/DAQ underwater system (right)

R.Wischnewski ECRS Summary - The Baikal Telescope is successfully running since 10 years - strong in HE-diffuse search (cascades): “Mton-detector” - good GRB-sensitivity - relevant other results: Magnetic Monopoles, WIMPs, atm.  - complementary to AMANDA (sky, optical, pattern-reco, …) - aggressive upgrade to NT-200+ in 2005: improve the HE cascade sensitivity by also: ideas on a future Gigaton Volume Detector (km3)

R.Wischnewski ECRS Almost exactly like our HE-Gamma colleagues we eagerly wait for more sources to show up in our field of view … At least one per Telescope … BAIKAL will for a few years remain the largest (and only) Northern hemisphere Underwater (and only) Northern hemisphere Underwater Cerenkov Telescope. Cerenkov Telescope.

R.Wischnewski ECRS

R.Wischnewski ECRS Backup Slides...

WIMP Search Expectation for atmospheric neutrinos: Atm. neutrino induced muons (E th ~ 10 GeV) Atmosp. neutrinos (Bartol-96, SK-oscillation)

High energy cascade selection: (1)Upward light from below : t min = min(t i - t j ), j > i (for all strings in event) t min > -10 ns (2) High energy: N hit > 15 ch. Nb. of hit channels Selecting HE Cascades t min : data (N hit >40 ch.) t min : Data + MC (t min >-10 ns)

R.Wischnewski ECRS Event selection criteria High energy cascades - experiment - atm. muons background

R.Wischnewski ECRS Backup slides

R.Wischnewski ECRS Example of interaction between ANTARES,NEMO   Baikal  Verification of Lake Baikal Attenuation / Absorb. / Scatt. results  Cross-Calibration: AC9 (Antares/Nemo) vs. Burhan ASP15 (Baikal)  Agreement ! see: NIM A498 (2003) Baikal-NEMO Campaign March, 2001

R.Wischnewski ECRS Shore Station with OMs (April 1993)

R.Wischnewski ECRS The end.