POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
Raman Spectroscopy A) Introduction IR Raman
Vibrational Spectroscopy of Cold Molecular Ions Ncamiso Khanyile Ken Brown Lab School of Chemistry and Biochemistry June 2014.
Development of an External Cavity Quantum Cascade Laser for High- Resolution Spectroscopy of Molecular Ions JACOB T. STEWART, BRADLEY M. GIBSON, BENJAMIN.
Investigating excited state dynamics in 7-azaindole Nathan Erickson, Molly Beernink, and Nathaniel Swenson 1.
Workshop on HPC in India Chemical Dynamics in Aqueous Media Amalendu Chandra Department of Chemistry, Indian Institute of Technology Kanpur, India
Condensed phase vs. Isolated gas phase spectra Solution phase A A A A A A W W W W W WW W W W W W W W W W W W: water A: sample ( nm) ( nm) Isolated.
Lecture 3 INFRARED SPECTROMETRY
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Spectroscopy of Hybrid Inorganic/Organic Interfaces Vibrational Spectroscopy Dietrich RT Zahn.
Time out—states and transitions Spectroscopy—transitions between energy states of a molecule excited by absorption or emission of a photon h =  E = E.
Common types of spectroscopy
RYDBERG ELECTRONS International Symposium on Molecular Spectroscopy 17 June 2008 Michael P. Minitti Brown University STEALTHY SPIES OF MOLECULAR STRUCTURE.
INFRARED SPECTROSCOPIC STUDY ON FERMI RESONANCE OF THE EXCESS PROTON VIBRATION IN BINARY CLUSTERS Ryunosuke SHISHIDO, Asuka FUJII Department of Chemistry,
Rotationally Resolved Diode Laser Jet Spectroscopy of Propadienone (CH 2 CCO) in the 3 Band Region P. J. O’Sullivan, R. J. Livingstone, Z. Lui, P. B. Davies.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Aloke Das Indian Institute of Science Education and Research, Pune Mimicking trimeric interactions in the aromatic side chains of the proteins: A gas phase.
Georg-August-Universitaet Goettingen Tobias N. Wassermann Institute of Physical Chemistry Goettingen 19/06/ st Ohio State University Symposium on.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
States and transitions
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
Jet-FTIR Studies of Model Peptide Systems Corey A. Rice and Martin A. Suhm Institut für Physikalische Chemie Universität Göttingen Tammannstr. 6 D
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Proton Sponges: A Simple Organic Motif for Revealing the Quantum Structure of the Intramolecular Proton Bond H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+ H+H+
E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
65th Ohio State University Symposium on Molecular Spectroscopy June 21–25, 2010 Stark spectrum simulation of X 2 Y 4 asymmetric molecules: application.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Study of the CH 2 I + O 2 Reaction with a Step-scan Fourier-transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH 2 OO and.
FIRST HIGH RESOLUTION INFRARED SPECTROSCOPY OF GAS PHASE CYCLOPENTYL RADICAL: STRUCTURAL AND DYNAMICAL INSIGHTS FROM THE LONE CH STRETCH Melanie A. Roberts,
Detecting Hydrogen Atoms in Solid Parahydrogen using FTIR Spectroscopy RD03 - Cold Quantum Systems 1015 McPherson Lab 9:22 am Thursday, June 21,
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Infrared Observation of the ν 1 (  ) and ν 2 (  ) Stretching Modes of Linear GeC 3 E. Gonzalez, C.M.L. Rittby, and W.R.M. Graham Department of Physics.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
Photoelectron spectroscopy of the cyclopentadienide anion: Analysis of the Jahn- Teller effects in the cyclopentadienyl radical Takatoshi Ichino, Adam.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF LANTHANIDE (Gd, Lu) BENZENE COMPLEXES M. ROUDJANE, S. KUMARI and D.-S. YANG University of Kentucky Lexington,
Infrared Spectra of Anionic Coinage Metal-Water Complexes J. Mathias Weber JILA and Department of Chemistry and Biochemistry University of Colorado at.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Vibrational Dynamics of Cyclic Acid Dimers: Trifluoroacetic Acid in Gas and Dilute Solutions Steven T. Shipman, Pam Douglass, Ellen L. Mierzejewski, Brian.
 Small molecules forming the elementary blocks of biomolecules: amino acids, small peptides, nucleic acids, sugars… Can serve as validation tools relatively.
Vibrational Predissociation Spectroscopy of Homoleptic Heptacoordinate Metal Carbonyl Complexes Allen M. Ricks and Michael A. Duncan Department of Chemistry.
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 : ← Band Near 4.3 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
THE ANALYSIS OF 2ν3 BAND OF HTO
Pure rotational spectrum of the “non-polar” dimer of Formic acid
PHOTODISSOCIATION OF FORMIC ACID ISOLATED IN SOLID PARAHYDROGEN Y
69th annual international symposium on molecular spectroscopy
Jacob T. Stewart and Bradley M
ADINA INSTITUTE OF SCIENCE AND TECHNOLOGY
Vibrational Spectroscopy and Gas-Phase Thermochemistry of the Model Dipeptide N-Acetyl Glycine Methyl Amide International Symposium of Molecular Spectroscopy.
Raman Spectroscopy A) Introduction IR Raman
IR Spectra of CH2OO at resolution 0
Fourier Transform Infrared Spectral
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Presentation transcript:

POLAR (ACYCLIC) ISOMER OF FORMIC ACID DIMER: RAMAN SPECTROSCOPY STUDY Roman M. Balabin D-CHAB, ETH Zurich, Switzerland

Content I. Introduction and motivation: formic acid II. Experimental: high-sensitivity Raman setup III. Spectrum assignment IV. Thermodynamic parameters: KD, ΔG, ΔH, and ΔS

Part I I. Introduction and motivation: formic acid II. Experimental: high-sensitivity Raman setup III. Spectrum assignment IV. Thermodynamic parameters: KD, ΔG, ΔH, and ΔS

Formic Acid (FA) The simplest carboxylic acid (RCOOH, R=H) Formic acid dimer (FAD) is a prototype of molecular complexes with double hydrogen bond Hydrogen tunneling splitting Environmental importance (clouds and fog) Role in human metabolism etc.

Cyclic Dimer of Formic Acid (c-FAD) Vapor pressure measurements Gas-phase electron diffraction Infrared spectroscopy Raman spectroscopy Dielectric spectroscopy NMR spectroscopy Laser temperature jump Shock-tube technique Coolidge, JACS 50, 2166 (1928); Millikan, JACS 80, 3515 (1958); Lazaar, JACS 107, 3769 (1985); Ito, CPL 318, 571 (2000)

Other Dimer Structures Chocholoušová, PCCP 4, 2119 (2002); Balabin, Chem. Phys. 352, 267 (2008); Balabin, JPCA 113, 4910 (2009) [MP2/aug-cc-pVTZ]

Acyclic Dimer of Formic Acid (a-FAD) Molecular dynamics simulations Ab initio studies IR study – Pulse deposition into Ar matrices (7 K) IR study – Ultracold He nanodroplets (0.37 K) Madeja, JCP 120, 10554 (2004); Chocholoušová, PCCP 4, 2119 (2002); Gantenberg, Chem. Eur. J. 6, 1865 (2000)

Project Goals and Motivation Find acyclic FAD in a gas-phase Identify acyclic FAD structure Evaluate thermodynamic parameters Motivation: Molecular dynamics (MD): force field parameterization Biochemistry and biophysics (enzymes, DNA/RNA base pairs, etc.) H-bonding: benchmark experimental data Valdes, PCCP 10, 2747 (2008); Balabin, JCP 129, 164101 (2008); Kirby, Nature 456, 45 (2008); Stratton, Biochem. 40, 10411 (2001)

Part II I. Introduction and motivation: formic acid II. Experimental: high-sensitivity Raman setup III. Spectrum assignment IV. Thermodynamic parameters: KD, ΔG, ΔH, and ΔS

High-Sensitivity Raman Setup Hill, Appl. Opt. 16, 2044 (1977); Zielke, PCCP 9, 4528 (2007); Balabin, JPCA 113, 1012 (2009); Balabin, JPCA 113, 4910 (2009)

Setup Parameters Laser type: DPSS Laser wavelength: 457 nm Laser power: 19.8 W Number of passes 67 Cell gain: 47.5±0.5 Raman scattering angle: 90° Collecting condenser type: four-lens Collecting angle: 2×84°

Experimental Parameters Temperature range: 25–45 °C Temperature step: 1.00±0.04 °C Temperature accuracy: 0.01 °C Vapor pressure range: 3000-9000 Pa Spectral resolution: 2 cm-1 Accumulation time: 2.5 min (15×10 s)

Experimental Challenges Laser instability Retroreflecting cell instability Low concentration of a-FAD: Pa-FAD < 1 Pa [1014 cm-3] Formic acid decomposition (kr  10-4 h-1): HCOOH → CO + H2O HCOOH → CO2 + H2 Formic acid adsorption onto metal surfaces (cell walls) and optical elements Coolidge, JACS 50, 2166 (1928); Gibson, Chem. Rev. 69, 673 (1969); Mathews, J. Chem. Soc. A, 2203 (1969).

Part III I. Introduction and motivation: formic acid II. Experimental: high-sensitivity Raman setup III. Spectrum assignment IV. Thermodynamic parameters: KD, ΔG, ΔH, and ΔS

Raman Spectrum of Formic Acid Balabin, JPCA 113, 4910 (2009)

Band Assignment (1/2) Do we observe a dimer? Vapor pressure influence

Band Assignment (2/2) Is it an acyclic FAD (II)? Quantum chemistry calculations: MP2/6-311++G(3df,2p)a 851 cm-1 B3LYP/6-311++G(3df,2p)a 843 cm-1 Exp. 864.1±2.1 cm-1 Isotope substitution Depolarisation ratio Thermodynamic parameters a Scaled according to c-FAD ν14 vibration.

Band Assignment (2/2) Is it an acyclic FAD (II)? Quantum chemistry calculations: MP2/6-311++G(3df,2p)a 851 cm-1 B3LYP/6-311++G(3df,2p)a 843 cm-1 Exp. 864.1±2.1 cm-1 Isotope substitution Depolarisation ratio Thermodynamic parameters No appropriate vibration in any deuterated FA a Scaled according to c-FAD ν14 vibration.

Band Assignment (2/2) Is it an acyclic FAD (II)? Quantum chemistry calculations: MP2/6-311++G(3df,2p)a 851 cm-1 B3LYP/6-311++G(3df,2p)a 843 cm-1 Exp. 864.1±2.1 cm-1 Isotope substitution Depolarisation ratio Thermodynamic parameters ρ(exp.)= 0.743(11); ρ(calc.)=0.75 a Scaled according to c-FAD ν14 vibration.

Part IV I. Introduction and motivation: formic acid II. Experimental: high-sensitivity Raman setup III. Spectrum assignment IV. Thermodynamic parameters: KD, ΔG, ΔH, and ΔS

Thermodynamic parameters of a-FAD ΔHa-FAD = -8.6±0.2 kcal mol-1 [-35.8±1.0 kJ mol-1] ΔSa-FAD = -36±2 cal mol-1 K-1 [-150±9 J mol-1 K-1] Balabin, JPCA 113, 4910 (2009); Balabin, JPCA 113, 1012 (2009); Balabin, Chemom. Intell. Lab. Syst. 88, 183 (2007)

Thermodynamic parameters: exp. vs. calc. II IIc III IV V VI ΔE -14.46 -8.82 -5.44 -6.8 -5.6 -3.87 -2.93 ΔS -43.7 -37.5 -37.8 -34.1 -34 -31.2 -27.2 MP2/6-311++G(3df,2p); ΔE is presented in kcal mol-1 , ΔS is presented in cal mol-1 K-1

Thermodynamic parameters: exp. vs. calc. II IIc III IV V VI ΔE -14.46 -8.82 -5.44 -6.8 -5.6 -3.87 -2.93 ΔS -43.7 -37.5 -37.8 -34.1 -34 -31.2 -27.2 ΔHa-FAD = -8.6±0.2 ΔSa-FAD = -36±2 MP2/6-311++G(3df,2p); ΔE is presented in kcal mol-1 , ΔS is presented in cal mol-1 K-1

Thermodynamic parameters: exp. vs. calc. II IIc III IV V VI ΔE -14.46 -8.82 -5.44 -6.8 -5.6 -3.87 -2.93 ΔS -43.7 -37.5 -37.8 -34.1 -34 -31.2 -27.2 ΔHa-FAD = -8.6±0.2 ΔSa-FAD = -36±2 MP2/6-311++G(3df,2p); ΔE is presented in kcal mol-1 , ΔS is presented in cal mol-1 K-1

Conclusions A polar (acyclic) isomer of formic acid dimer (II, a-FAD) is observed in a gas phase. Its v14 peak position is found to be at 864(2) cm-1. The presence of acyclic dimer is confirmed by the pressure dependence of Raman band intensity, temperature influence, and a comparison with quantum chemistry data. Thermodynamic parameters of polar formic acid dimer are experimentally evaluated for the first time. The enthalpy difference (ΔHa-FAD) is found to be -8.6(2) kcal mol-1; the entropy (ΔSa-FAD) is estimated to be -36(2) cal mol-1 K-1.

Thank you for your attention! Acknowledgements: Prof. M. Suhm (Göttingen University, Germany) P. Zielke (Göttingen University, Germany) E. Lomakina (Moscow State University, Russia) A. Borisov (Ministry of Defence, Russia) I. Samoilenko (Moscow State University, Russia) The Ministry of Defence of the Russian Federation Swiss Federal Institute of Technology (ETH Zurich) Saint-Petersburg State University of Information Technologies, Mechanics and Optics ITERA International Group of Companies

Experimental Setup