Zeuten 19 - E. Wilson - 1/18/2016 - Slide 1 Recap. of Transverse Dynamics E. Wilson – 15 th September 2003  Transverse Coordinates  Relativistic definitions.

Slides:



Advertisements
Similar presentations
Eric Prebys, FNAL.  We will tackle accelerator physics the way we tackle most problems in classical physics – ie, with 18 th and 19 th century mathematics!
Advertisements

1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
Syllabus and slides Lecture 1: Overview and history of Particle accelerators (EW) Lecture 2: Beam optics I (transverse) (EW) Lecture 3: Beam optics II.
Eric Prebys, FNAL.  Our previous discussion implicitly assumed that all particles were at the same momentum  Each quad has a constant focal length 
Transverse optics 2: Hill’s equation Phase Space Emittance & Acceptance Matrix formalism Rende Steerenberg (BE/OP) 17 January 2012 Rende Steerenberg (BE/OP)
M. LindroosNUFACT06 School Accelerator Physics Transverse motion Mats Lindroos.
Wilson Lab Tour Guide Orientation 11 December 2006 CLASSE 1 Focusing and Bending Wilson Lab Tour Guide Orientation M. Forster Mike Forster 11 December.
Review of basic mathematics: Vectors & Matrices Differential equations Rende Steerenberg (BE/OP) 16 January 2012 Rende Steerenberg (BE/OP) 16 January 2012.
Transverse dynamics Transverse dynamics: degrees of freedom orthogonal to the reference trajectory x : the horizontal plane y : the vertical plane Erik.
Lattice calculations: Lattices Tune Calculations Dispersion Momentum Compaction Chromaticity Sextupoles Rende Steerenberg (BE/OP) 17 January 2012 Rende.
Introduction to particle accelerators Walter Scandale CERN - AT department Roma, marzo 2006.
Poster reference: FR5PFP025 Extending the Energy Range of 50Hz Proton FFAGs S.J. Brooks RAL, Chilton, OX11 0QX, UK Magnetic.
Basic Mathematics Rende Steerenberg BE/OP CERN Accelerator School Basic Accelerator Science & Technology at CERN 3 – 7 February 2014 – Chavannes de Bogis.
Eric Prebys, FNAL.  Our previous discussion implicitly assumed that all particles were at the same momentum  Each quad has a constant focal length 
Quadrupole Transverse Beam Optics Chris Rogers 2 June 05.
Lecture 3 - E. Wilson - 22 Oct 2014 –- Slide 1 Lecture 3 - Magnets and Transverse Dynamics I ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Analytical considerations for Theoretical Minimum Emittance Cell Optics 17 April 2008 F. Antoniou, E. Gazis (NTUA, CERN) and Y. Papaphilippou (CERN)
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Eric Prebys, FNAL.  In terms of total charge and current  In terms of free charge an current USPAS, Knoxville, TN, January 20-31, 2013 Lecture 2 - Basic.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Eric Prebys, FNAL.  In our previous discussion, we implicitly assumed that the distribution of particles in phase space followed the ellipse defined.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Office of Science U.S. Department of Energy Containing a.
Alexander Molodozhentsev KEK for MR-commissioning group September 20, 2005 for RCS-MR commissioning group September 27, 2005 Sextupole effect for MR -
Tuesday, 02 September 2008FFAG08, Manchester Stephan I. Tzenov1 Modeling the EMMA Lattice Stephan I. Tzenov and Bruno D. Muratori STFC Daresbury Laboratory,
HST 2009 Introduction to AcceleratorsD. Brandt 1 The LHC: Physics without mathematics ! D. Brandt, CERN.
Lecture 7 - E. Wilson - 2/16/ Slide 1 Lecture 7 - Circulating Beams and Imperfections ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Accelerator Fundamentals Brief history of accelerator Accelerator building blocks Transverse beam dynamics coordinate system Mei Bai BND School, Sept.
Zeuten 2 - E. Wilson - 2/26/ Slide 1 Transverse Dynamics – E. Wilson – CERN – 16 th September 2003  The lattice calculated  Solution of Hill 
Lecture 4 - E. Wilson - 23 Oct 2014 –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Scaling Gas-filled Muon Ring Coolers Al Garren, UCLA Ringcooler Mini-workshop Tucson, December 15-16, 2003.
Lecture 4 - E. Wilson –- Slide 1 Lecture 4 - Transverse Optics II ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
Accelerator Physics & Diagnostics, H.Wiedemann, DITANET, March 6 – 11, 2011, Stockholm, Sweden Accelerator Physics for Diagnostics Helmut Wiedemann Stanford.
E.Wildner NUFACT09 School 1 Accelerator Physics Transverse motion Elena Wildner.
Lecture 4 Longitudinal Dynamics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
Contents:  Overview of the Lectures  A Brief History on Particle Accelerators  The Mathematics we Need  Overview of the CERN Accelerator Complex 
Lecture 3 Transverse Optics II
Accelerator Laboratory OPTICS BASICS S. Guiducci.
Professor Philip Burrows John Adams Institute for Accelerator Science Oxford University ACAS School for Accelerator Physics January 2014 Longitudinal Dynamics.
Lecture 2 Transverse Optics I Professor Emmanuel Tsesmelis Directorate Office, CERN Department of Physics, University of Oxford ACAS School for Accelerator.
Lecture 5 - E. Wilson - 6/29/ Slide 1 Lecture 5 ACCELERATOR PHYSICS MT 2014 E. J. N. Wilson.
Contents:  Lattices and TWISS Parameters  Tune Calculations and Corrections  Dispersion  Momentum Compaction  Chromaticity  Sextupole Magnets 
Damping rings, Linear Collider School Linear beam dynamics overview Yannis PAPAPHILIPPOU Accelerator and Beam Physics group Beams Department CERN.
Lecture A3: Damping Rings
AXEL-2017 Introduction to Particle Accelerators
Lecture 8 - Circulating Beams and Imperfections
Lecture A3: Damping Rings
AXEL-2017 Introduction to Particle Accelerators
Academic Training Lecture 2 : Beam Dynamics
Lecture 4 - Transverse Optics II
Large Booster and Collider Ring
Lecture 3 - Magnets and Transverse Dynamics I
Lecture 6 ACCELERATOR PHYSICS MT 2011 E. J. N. Wilson.
Lecture 32 ACCELERATOR PHYSICS HT E. J. N. Wilson.
Lecture HT13 Beam-Beam I ACCELERATOR PHYSICS HT E. J. N. Wilson.
Review of Accelerator Physics Concepts
Lecture 6 ACCELERATOR PHYSICS MT 2015 E. J. N. Wilson.
Lecture 4 - Transverse Optics II
Lecture 7 - Circulating Beams and Imperfections
Electron Rings Eduard Pozdeyev.
Lecture 4 - Transverse Optics II
Negative Momentum Compaction lattice options for PS2
AXEL-2011 Introduction to Particle Accelerators
AXEL-2011 Introduction to Particle Accelerators
Physics 417/517 Introduction to Particle Accelerator Physics
Lecture 5 ACCELERATOR PHYSICS MT 2009 E. J. N. Wilson.
Lecture 2 - Transverse motion
Lecture 5 ACCELERATOR PHYSICS MT 2015 E. J. N. Wilson.
Negative Momentum Compaction lattice options for PS2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
Presentation transcript:

Zeuten 19 - E. Wilson - 1/18/ Slide 1 Recap. of Transverse Dynamics E. Wilson – 15 th September 2003  Transverse Coordinates  Relativistic definitions  Magnetic rigidity  Bending Magnet  Fields and force in a quadrupole  Alternating gradients  Equation of motion in transverse co-ordinates  Transverse ellipse  Physical meaning of Q and   Twiss Matrix  Effect of a drift length and a quadrupole  Focusing in a sector magnet  Calculating the Twiss parameters  FODO Cell  Stability  Dispersion  Chromaticity

Zeuten 19 - E. Wilson - 1/18/ Slide 2 Transverse Coordinates  Magnetic force on a moving particle   Coordinates »z - vertical »x - horizontal »y means either vertical or horizontal »s - direction of the beam  Quadrupoles act on x and z like lenses  RF Cavities accelerate in the s direction 

Zeuten 19 - E. Wilson - 1/18/ Slide 3 Relativistic definitions Energy of a particle at rest Total energy of a moving particle (definition of  ) Another relativistic variable is defined: Alternative axioms you may have learned You can prove:

Zeuten 19 - E. Wilson - 1/18/ Slide 4 Magnetic rigidity Fig.Brho 4.8 dd dd

Zeuten 19 - E. Wilson - 1/18/ Slide 5 Bending Magnet  Effect of a uniform bending (dipole) field  If then  Sagitta

Zeuten 19 - E. Wilson - 1/18/ Slide 6 Fields and force in a quadrupole No field on the axis Field strongest here (hence is linear) Force restores Gradient Normalised: POWER OF LENS Defocuses in vertical plane SOLUTION IS TO ALTERNATE THE GRADIENTS OF A SERIES OF QUADS Fig. cas 10.8

Zeuten 19 - E. Wilson - 1/18/ Slide 7 Alternating gradients

Zeuten 19 - E. Wilson - 1/18/ Slide 8 Equation of motion in transverse co- ordinates  Hill’s equation (linear-periodic coefficients) where at quadrupoles like restoring constant in harmonic motion  Solution (e.g. Horizontal plane)  Condition  Property of machine  Property of the particle (beam)  Physical meaning (H or V planes) Envelope Maximum excursions

Zeuten 19 - E. Wilson - 1/18/ Slide 9 Transverse ellipse  Definition of displacement and divergence

Zeuten 19 - E. Wilson - 1/18/ Slide 10 Physical meaning of Q and 

Zeuten 19 - E. Wilson - 1/18/ Slide 11  All such linear motion from points 1 to 2 can be described by a matrix like:  Can be simplified if we define the “Twiss” parameters:  Giving the matrix for a ring (or period) Twiss Matrix

Zeuten 19 - E. Wilson - 1/18/ Slide 12 Effect of a drift length and a quadrupole Quadrupole Drift length

Zeuten 19 - E. Wilson - 1/18/ Slide 13 Focusing in a sector magnet

Zeuten 19 - E. Wilson - 1/18/ Slide 14 Calculating the Twiss parameters THEORYCOMPUTATION (multiply elements) Real hard numbers Solve to get Twiss parameters:

Zeuten 19 - E. Wilson - 1/18/ Slide 15 FODO Cell Write down matrices from mid-F to mid-F Since they must equal the Twiss matrix: LL

Zeuten 19 - E. Wilson - 1/18/ Slide 16 Stability diagram for FODO If motion is bounded then  must be real Conditions Just like: HENCE bounded

Zeuten 19 - E. Wilson - 1/18/ Slide 17 Dispersion  Low momentum particle is bent more  It should spiral inwards but:  There is a displaced (inwards) closed orbit  Closer to axis in the D’s  Extra (outward) force balances extra bends  D(s) is the “dispersion function” Fig. cas C

Zeuten 19 - E. Wilson - 1/18/ Slide 18 Dispersed beam cross sections  These are real cross-section of beam  The central and extreme momenta are shown  There is of course a continuum between  The vacuum chamber width must accommodate the full spread  Half height and half width are:

Zeuten 19 - E. Wilson - 1/18/ Slide 19  The Q is determined by the lattice quadrupoles whose strength is:  Differentiating:  Remember from gradient error analysis  Giving by substitution Q’ is the chromaticity  “Natural” chromaticity Chromaticity N.B. Old books say

Zeuten 19 - E. Wilson - 1/18/ Slide 20 Summary  Transverse Coordinates  Relativistic definitions  Magnetic rigidity  Bending Magnet  Fields and force in a quadrupole  Alternating gradients  Equation of motion in transverse co-ordinates  Transverse ellipse  Physical meaning of Q and   Twiss Matrix  Effect of a drift length and a quadrupole  Focusing in a sector magnet  Calculating the Twiss parameters  FODO Cell  Stability  Dispersion  Chromaticity