A Laser-induced Fluorescence Spectroscopy Study of Rhodium Monosulfide Runhua Li and Walter J. Balfour Department of Chemistry, University of Victoria.

Slides:



Advertisements
Similar presentations
Uv spectroscopy.
Advertisements

UV / visible Spectroscopy
Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy Leah C. O'Brien and Kaitlin A. Womack, Department of Chemistry, Southern.
Ultraviolet (UV) region 4 x m to m Region of greatest interest to organic chemists from 2 x m to 4 x meters 10.9 Ultraviolet Spectroscopy.
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 25 Electronic Spectroscopy.
Chemistry 2 Lecture 10 Vibronic Spectroscopy. Learning outcomes from lecture 9 Excitations in the visible and ultraviolet correspond to excitations of.
1 OBSERVATION OF TWO  =0 + EXCITED ELECTRONIC STATES IN JET-COOLED LaH Suresh Yarlagadda Ph.D Student Homi Bhabha National Institute Bhabha Atomic Research.
MEASUREMENT OF HYPERFINE STRUCTURE AND PERMANENT ELECTRIC DIPOLE MOMENTS IN THE ELECTRONIC SPECTRUM OF IRIDIUM MONOHYDRIDE AND DEUTERIDE C. LINTON, A.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
E LECTRONIC T RANSITIONS OF S CANDIUM M ONOXIDE NA WANG, Y.W. NG, and A. S-C. CHEUNG The University of Hong Kong 109 Pokfulam Road, Hong Kong SAR, P.R.China.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
DMITRY G. MELNIK AND ROBERT F. CURL, The Department of Chemistry and Rice Quantum Institute, Rice University, Houston, Texas 77005; JINJUN LIU, JOHN T.
The electronic spectrum and molecular structure of HAsO, the arsenic analog of HNO Robert Grimminger and Dennis J. Clouthier Department of Chemistry, University.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
68th International Symposium on Molecular Spectroscopy Ohio State University June 17-21, 2013 Wei-Li Li, Tian Jian, Gary V. Lopez, and Lai-Sheng Wang Department.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
Laboratory of Molecular Spectroscopy & Nano Materials, Pusan National University, Republic of Korea Spectroscopic Identification of New Aromatic Molecular.
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
Zhong Wang, Trevor Sears Department of Chemistry, Brookhaven National Laboratory; Department of Chemistry, Stony Brook University Ju Xin Department of.
Detection of the H 2 PS free radical by laser spectroscopy Robert Grimminger *, Dennis J. Clouthier *, and Riccardo Tarroni † * Department of Chemistry,
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Electronic spectroscopy of CHBr and CDBr Chong Tao, Calvin Mukarakate, Mihaela Deselnicu and Scott A. Reid Department of Chemistry, Marquette University.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
Infrared Spectroscopy & Structures of Mass-Selected Rhodium Carbonyl & Rhodium Dinitrogen Cations Heather L. Abbott, 1 Antonio D. Brathwaite 2 and Michael.
1 Intracavity Laser Absorption Spectroscopy of Nickel Fluoride in the Near-Infrared James J. O'Brien Department of Chemistry & Biochemistry University.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
Zeeman Spectroscopy of CaH Jinhai Chen, J. Gengler &T. C. Steimle, The 60 th International Symposium on Molecular Spectroscopy.
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
HIGH RESOLUTION LASER SPECTROSCOPY OF IRIDIUM MONOFLUORIDE AND IRIDIUM MONOCHLORIDE A.G. ADAM, L. E. DOWNIE, S. J. FORAN, A. D. GRANGER, D. FORTHOMME,
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
Reinvestigation of The Emission Spectra Following the 266 nm Photolysis of Iodomethanes Cian-Ping Tu, Hsin-I Cheng, and Bor-Chen Chang Department of Chemistry.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
STARK AND ZEEMAN EFFECT STUDY OF THE [18.6]3.5 – X(1)4.5 BAND OF URANIUM MONOFLUORIDE, UF COLAN LINTON, ALLAN G. ADAM University of New Brunswick TIMOTHY.
PULSED-FIELD IONIZATION ELECTRON SPECTROSCOPY OF LANTHANIDE (Gd, Lu) BENZENE COMPLEXES M. ROUDJANE, S. KUMARI and D.-S. YANG University of Kentucky Lexington,
HIGH RESOLUTION SPECTROSCOPY OF THE B 2 A 1 - X 2 A 1 TRANSITION OF CaCH 3 and SrCH 3 P. M. SHERIDAN, M. J. DICK, J. G. WANG AND P. F. BERNATH University.
Two-color Resonant Four-wave Mixing Spectroscopy of Highly Predissociated Levels in the à 2 A 1 State of CH 3 S Ching-Ping Liu, a Scott A. Reid, b and.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Bob Grimminger, Jie Wei, Blaine Ellis, and Dennis J. Clouthier Department of Chemistry, University of Kentucky, Lexington, KY Zhong Wang, and Trevor Sears.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
High-resolution Fourier transform emission spectroscopy of the A 2  + – X 2  transition of the BrCN + ion. June 20, 2005, Ohio state Univ. Yoshihiro.
Md Asmaul Reza, Jahangir Alam, Amy Mason, Neil Reilly and Jinjun Liu Department of Chemistry, University of Louisville JET-COOLED DISPERSED FLUORESCENCE.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
LASER-INDUCED FLUORESCENCE STUDIES OF THE JET-COOLED CARBON DIOXIDE AND NITROUS OXIDE CATIONS June Mohammed A. Gharaibeh and Dennis J. Clouthier.
Plot Diagram.
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
LASER SPECTROSCOPY AND DYNAMICS OF THE JET-COOLED AsH2 FREE RADICAL
Wendy W. Chen, Thomas C. Galvin, Thomas J. Houlahan, and J. Gary Eden
LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF TWO RUTHENIUM-BEARING MOLECULES: RuF AND RuCl Hanif Zarringhalam,Department of Physics Allan G. Adam, Department.
Molecular Orbitals of Heteronuclear Diatomic Molecules
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
High Resolution Laser Spectroscopy of Iridium Monofluoride
Laser spectroscopy and ab initio calculations on TaF
CHONG TAO, D. BRUSSE, Y. MISHCHENKO, C. MUKARAKATE and S. A. REID,
Electronic bands of ScC in the region 620 – 720 nm
Fourier Transform Emission Spectroscopy of CoH and CoD
FLUORESCENCE-DEPLETION INFRARED SPECTROSCOPY
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Molecular Spectroscopy
Molecular Orbitals Two interacting orbitals make two new orbitals. Using a 1s orbital on two H atoms: anitbonding orbital = higher energy bonding orbital.
Molecular Orbitals Two interacting orbitals make two new orbitals. Using a 1s orbital on two H atoms: anitbonding orbital = higher energy bonding orbital.
Electronic spectroscopy of DCF
Presentation transcript:

A Laser-induced Fluorescence Spectroscopy Study of Rhodium Monosulfide Runhua Li and Walter J. Balfour Department of Chemistry, University of Victoria W. Scott Hopkins and Allan G. Adam Department of Chemistry, University of New Brunswick

Band heads observed in LIF spectra from Rh+CS 2 s=strong; m=medium; w=weak

Observed electronic energy levels and transitions of RhS in LIF

RhS cm -1 band

Partial High-Resolution Spectrum of cm -1 band for RhS

T J(J+1)±0.2228(J+1/2) Reduced term value plot for the [18.13]  1/2 state of RhS

Term Values (cm -1 ) in the 4  - Ground State of RhS

X=(J-1/2)(J+3/2). Upper and lower signs give the e (F 1 and F 3 ) and f (F 2 and F 4 ) levels respectively.

Fitted Ground State Parameters for RhS ParameterValue/cm -1 Std. Devn. B ×10 -4 D9× ×10 -8 λ ×10 -3 λDλD 8.05× × ×10 -4 No. of data points = 463 ; Overall standard deviation = cm -1

Qualitative molecular orbital correlation diagram for RhS

A comparison of ground state data for some Rh diatomic species

Comparison of the molecular orbitals for the rhodium diatomics

Summary : Ground State of RhS Rh S r 0 = nm