Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.

Slides:



Advertisements
Similar presentations
Warm Up Lesson Presentation Lesson Quiz.
Advertisements

Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Ways to Prove Triangles Congruent
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List the 4 theorems/postulates.
Proving Triangles Congruent Geometry D – Chapter 4.4.
1 Press Ctrl-A ©G Dear2008 – Not to be sold/Free to use Congruent Triangles Stage 6 - Year 11 Mathematic ( Preliminary )
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used.
Chapter 4.6 Notes: Use Congruent Triangles Goal: You will use congruent triangles to prove that corresponding parts are congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Proving Triangles Congruent Geometry Ch 04 A BowerPoint Presentation.
SIMILAR TRIANGLES.
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
& 5.2: Proving Triangles Congruent
11. No, need  MKJ   MKL 12. Yes, by Alt Int Angles  SRT   UTR and  STR   URT; RT  RT (reflex) so ΔRST  ΔTUR by ASA 13.  A   D Given  C 
Section 7 : Triangle Congruence: CPCTC
Chapter 5 Introduction to Trigonometry: 5
Holt Geometry 4-6 Triangle Congruence: CPCTC Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
C HAPTER congruent triangles. SAT P ROBLEM OF THE DAY.
Warm Up 1. What are sides AC and BC called? Side AB?
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry.
4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 4-6 Triangle Congruence: CPCTC 4-6 Triangle Congruence: CPCTC Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
CPCTC Be able to use CPCTC to find unknowns in congruent triangles! Are these triangles congruent? By which postulate/theorem? _____  _____ J L K N M.
Warm-up Identify the postulate or theorem that proves the triangles congruent.
Triangle Congruences SSS SAS AAS ASA HL.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
By Shelby Smith and Nellie Diaz. Section 8-1 SSS and SAS  If three sides of one triangle are congruent to three sides of another triangle, then the triangles.
________________ is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof.
4-6 Triangle Congruence: CPCTC Holt Geometry.
Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ? .
Geometry 4-6 CPCTC. Definition  Corresponding Parts of Congruent Triangles are Congruent (CPCTC)  If two triangles are congruent, then all of their.
8.2 CPCTC Geometry.
4-4 Using Corresponding Parts of Congruent Triangles I can determine whether corresponding parts of triangles are congruent. I can write a two column proof.
Side-side-side (SSS) postulate If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.
Triangle Proofs. USING SSS, SAS, AAS, HL, & ASA TO PROVE TRIANGLES ARE CONGRUENT STEPS YOU SHOULD FOLLOW IN PROOFS: 1. Using the information given, ______________.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Holt Geometry 4-3 Congruent Triangles 4-3 Congruent Triangles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Objectives Use properties of congruent triangles.
4-8 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
Warm UP.
Objective! Use CPCTC to prove parts of triangles are congruent.
Warm Up (on the ChromeBook cart)
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective! Use CPCTC to prove parts of triangles are congruent.
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
5.7 Vocabulary CPCTC CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Objective Use CPCTC to prove parts of triangles are congruent.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-3 Congruent Triangles Warm Up Lesson Presentation Lesson Quiz
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm-Up Which congruence shortcut, if any,
CPCTC uses congruent triangles to prove corresponding parts congruent.
Vocabulary corresponding angles corresponding sides congruent polygons.
8.3 Methods of Proving Triangles Similar
4-7 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC 4-4
Objective We will analyze congruent triangles
Congruence Lesson 9-5.
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
4-6 Warm Up Lesson Presentation Lesson Quiz Triangle Congruence: CPCTC
Ways to prove triangles congruent:
Congruent Triangles. Congruence Postulates.
Warm Up Find the measures of the sides of ∆ABC and classify the triangle by its sides. A(-7, 9) B(-7, -1) C(4, -1) AB = 10 BC = 11 AC = √221 The triangle.
Basic Geometry Section 4-6: Triangle Congruence: CPCTC
Presentation transcript:

Warm Up 1. If ∆ABC  ∆DEF, then A  ? and BC  ?. 2. What is the distance between (3, 4) and (–1, 5)? 3. If 1  2, why is a||b? 4. List methods used to prove two triangles congruent. Chapter 4.7

Use CPCTC to prove parts of triangles are congruent. Objective

CPCTC is an abbreviation for the phrase “Corresponding Parts of Congruent Triangles are Congruent.” It can be used as a justification in a proof after you have proven two triangles congruent.

SSS, SAS, ASA, AAS, and HL use corresponding parts to prove triangles congruent. CPCTC uses congruent triangles to prove corresponding parts congruent. Remember!

Check It Out! Example 1 A landscape architect sets up the triangles shown in the figure to find the distance JK across a pond. What is JK? One angle pair is congruent, because they are vertical angles. Two pairs of sides are congruent, because their lengths are equal. Therefore the two triangles are congruent by SAS. By CPCTC, the third side pair is congruent, so JK = 41 ft.

Prove: XYW  ZYW Given: YW bisects XZ, XY  YZ. Z

Prove: PQ  PS Given: PR bisects QPS and QRS.

Work backward when planning a proof. To show that ED || GF, look for a pair of angles that are congruent. Then look for triangles that contain these angles. Helpful Hint

Given: D(–5, –5), E(–3, –1), F(–2, –3), G( – 2, 1), H(0, 5), and I(1, 3) Prove: DEF  GHI

2. Given: X is the midpoint of AC. 1  2 Prove: X is the midpoint of BD.

Assignment: Pg. 271 (8-13)