A Readout System Utilizing the APV25 ASIC for the Forward GEM Tracker in STAR G. J. Visser 1, J. T. Anderson 2, B. Buck 3, A. S. Kreps 2, T. Ljubicic 4.

Slides:



Advertisements
Similar presentations
Controller Tests Stephen Kaye Controller Test Motivation Testing the controller before the next generation helps to shake out any remaining.
Advertisements

20/Oct./2000 CF IEEE NSS 2000 at Lyon,France 1 An MWPC Readout Chip for High Rate Environment Introduction ASIC Structure & Fabrication ASIC Evaluation.
ESODAC Study for a new ESO Detector Array Controller.
A scalable DAQ system using the DRS4 sampling chip H.Friederich 1, G.Davatz 1, U.Hartmann 2, A.Howard 1, H.Meyer 1, D.Murer 1, S.Ritt 2, N.Schlumpf 2 1.
Ultrafast 16-channel ADC for NICA-MPD Forward Detectors A.V. Shchipunov Join Institute for Nuclear Research Dubna, Russia
CHL -2 Level 1 Trigger System Fully Pipelined Custom ElectronicsDigitization Drift Chamber Pre-amp The GlueX experiment will utilize fully pipelined front.
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
1 (Gerard Visser – US Belle II Electronics Meeting 7/15/2011) Belle-II bKLM Readout System Concepts, &c. W. Jacobs, G. Visser, A. Vossen Indiana University.
RPC Electronics Status Overall system TDC –Digitizing frequency issue (determine the bin size of the TDC value) Discriminator test result Trigger module.
28 August 2002Paul Dauncey1 Readout electronics for the CALICE ECAL and tile HCAL Paul Dauncey Imperial College, University of London, UK For the CALICE-UK.
D. Peterson, “Status of the Cornell/Purdue Program” TPC R&D Mini Workshop, Orsay 12-January Status of the Cornell/Purdue Program: first events with.
D. Peterson, “The Cornell/Purdue TPC”, ALCPG, Snowmass, 23-August The Cornell/Purdue TPC Information available at the web site:
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
Ph. Farthouat CERN ELEC 2002 ADC 1 Analog to Digital Conversion  Introduction  Main characteristics –Resolution –Dynamic range –Bandwidth –Conversion.
Status of LAV FEE electronics G. Corradi, C. Paglia, D. Tagnani & M. Raggi, T. Spadaro, P. Valente.
A Readout System Utilizing the APV25 ASIC for the Forward GEM Tracker in STAR G. J. Visser 1, J. T. Anderson 2, B. Buck 3, A. S. Kreps 2, T. Ljubicic 4.
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
GEM Electronic System Status New releases of electronic boards: ◦ MPD v 4.0 ◦ Backplane 5 slot short (for UVa design) ◦ APV Front-End with Panasonic connector.
Status of Detector Prototype (for Hawaii meeting at Big Island) August 24, 2002 Yee Bob Hsiung For Koji Ueno, Yuri Velikzhanin Yanan Guo and Eddie Huang.
A 72 Channel 125 MSPS Analog-to-Digital Converter Module for Drift Chamber Readout for the GlueX Detector G. Visser 1, D. Abbot 2, F. Barbosa 2, C. Cuevas.
1 Hall D Drift Chamber ElectronicsFJ Barbosa Drift Chamber Review6-8 March 2007 Electronics for CDC and FDC Hall D 1.Motivation 2.ASIC Development 3.Preamp.
M. Lo Vetere 1,2, S. Minutoli 1, E. Robutti 1 1 I.N.F.N Genova, via Dodecaneso, GENOVA (Italy); 2 University of GENOVA (Italy) The TOTEM T1.
25/05/2010 RD51 Collaboration Meeting Cisbani-Musico-Minutoli / Status JLab Electronics 1 Status of the APV25 electronics for the GEM tracker at JLab Evaristo.
ICARUS General Trigger Design Contributions from: M.Della Pietra, A.Di Cicco, P.Di Meo, G.Fiorillo, P.Parascandolo, R.Santorelli, P.Trattino B.Baboussinov,
Update on the HBD Craig Woody BNL DC Meeting June 8, 2005.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
CDC readout system status MT 2009 July 7. BELLE II CDC readout electronics CDC.
HallA/SBS – Front Tracker PARAMETERDESIGN VALUE Microstrip Silicon Detector Number of tiles/plane and size2 Number of planes2 Size of the single
HBD FEE test result summary + production schedule 16mv test pulse result –5X attenuator + 20:1 resistor divider at input (to reduce the noise on the test.
Alexei SemenovGeneric Digitizer Generic Digitizer 10MHZ 16 bit 6U VME Board.
GEM Trackers for Super BigBite Spectrometer (SBS) in Hall JLab The Super Big Bite Spectrometer (SBS) is one of the major new equipment in hall A in.
DAQ/Trigger System proposal for the Angra Neutrino Detector Herman Lima Jr (18 May 2006) Centro Brasileiro de Pesquisas Físicas.
12GeV Trigger Workshop Christopher Newport University 8 July 2009 R. Chris Cuevas Welcome! Workshop goals: 1.Review  Trigger requirements  Present hardware.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Front-End Electronics for PHENIX Time Expansion Chamber W.C. Chang Academia Sinica, Taipei 11529,Taiwan A. Franz, J. Fried, J. Gannon, J. Harder, A. Kandasamy,
KLM Trigger Status Barrel KLM RPC Front-End Brandon Kunkler, Gerard Visser Belle II Trigger and Data Acquistion Workshop January 17, 2012.
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System Alexandre Camsonne APS DNP 2013 October 24 th 2013 Hall A Jefferson Laboratory.
Readout Architecture for MuCh Introduction of MuCh Layout of Much ( proposed several schemes) Read ASIC’s Key features Basic Readout chain ROC Block Diagram.
09/10/2010 RD51 Collaboration Meeting Cisbani-Musico-Minutoli / Status JLab Electronics 1 Status of the APV25 electronics for the GEM tracker at JLab Evaristo.
NA62 straw readout Characterization and qualification of the frontend electronics Detector and interface to frontend Small readout system Plans Expected.
SoLID DAQ A.Camsonne SoLID collaboration meeting November 8 th 2013.
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
TPC electronics Status, Plans, Needs Marcus Larwill April
Peter LICHARD CERN (for NA62) 1 NA62 Straw detector read-out system Introduction to NA62 NA62 layout Straw detector Requirements for straw detector electronics.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
1 (Gerard Visser – STAR Integration Meeting 5/16/2008) STAR Forward GEM Tracker Readout/DAQ Integration G. Visser Indiana University Cyclotron Facility.
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
G.F. Tassielli - SuperB Workshop XI LNF1/11 02/12/2009 Status report on CLUster COUnting activities G. F. Tassielli on behalf of CLUCOU group SuperB Workshop.
LECC2003: The 96 Chann FED Tester: Greg Iles30 September The 96 channel FED Tester Outline: (1) Background (2) Requirements of the FED Tester (3)
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
SVD FADC Status Markus Friedl (HEPHY Vienna) Wetzlar SVD-PXD Meeting, 5 February 2013.
SKIROC status Calice meeting – Kobe – 10/05/2007.
LHCb Outer Tracker Electronics 40MHz Upgrade
DCH FEE STATUS Level 1 Triggered Data Flow FEE Implementation &
Jinfan Chang Experimental Physics Center , IHEP Feb 18 , 2011
A General Purpose Charge Readout Chip for TPC Applications
Calorimeter Mu2e Development electronics Front-end Review
Evidence for Strongly Interacting Opaque Plasma
Iwaki System Readout Board User’s Guide
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
DCH FEE 28 chs DCH prototype FEE &
A Readout Electronics System for GEM Detectors
EMC Electronics and Trigger Review and Trigger Plan
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Example of DAQ Trigger issues for the SoLID experiment
SKIROC status Calice meeting – Kobe – 10/05/2007.
The CMS Tracking Readout and Front End Driver Testing
TOF read-out for high resolution timing
Presentation transcript:

A Readout System Utilizing the APV25 ASIC for the Forward GEM Tracker in STAR G. J. Visser 1, J. T. Anderson 2, B. Buck 3, A. S. Kreps 2, T. Ljubicic 4 1 Indiana University Center for Exploration of Energy and Matter, USA 2 Argonne National Laboratory, USA 3 Massachusetts Instituteof Technology, USA 4 Brookhaven National Laboratory, USA Introduction The Forward GEM Tracker (to be online for FY12 run) will extend STAR’s tracking reach to η =2, covering the Endcap EMC, with the principal focus being e + /e − discrimination for the W program. The FGT is comprised of six triple GEM chambers with pad/strip readout planes, and utilizes the APV25-S1 frontend ASIC developed for the CMS silicon tracker. The GlueX detector system, now under construction for Jefferson Lab Hall D includes the 3098 channel straw tube central drift chamber (CDC) surrounding the target, and the 24 layer planar cathode strip forward drift chamber (FDC) in the forward region. The FDC has 2304 anode wires with discriminator/TDC readout and cathode strips. An 8 channel frontend ASIC has been developed for these detectors in TSMC 0.25 µm CMOS technology. † The CDC and the cathode strips of the FDC, a total of channels, require 12 bit ADC (waveform digitizer) readout capable of deadtimeless operation at up to 200 kHz trigger rate, blahblah This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science and by the U.S. NSF. Design choices Some compromises are necessary for maximum channel density. The analog signal path must be kept relatively simple. In particular: A passive shaper uses no power, little board area An ADC driver stage is not necessary if we can keep the drive impedance reasonably low without it Differential drive is not necessary if the ADC uses a (relatively) high VDD and if we can tolerate a little nonlinearity However we do not compromise on the line receiver, this is the most crucial element. It is important to: Receive differential signal accurately Not inject common-mode ground noise back to cable & front end electronics Equalize cable frequency response Receiver / freq eq. Shaper ADC σ = 5.62 (12-bit: 1.40) 11.5 ENOB Open input: Typical FDC event (preliminary data from FDC prototype) 15 MHz* sine input, single event 100 pt readout 21 hostile (red) and 1 hostile (blue & brown) Indicates ~2% crosstalk in neighbor channels, acceptable but will try to reduce with layout improvements DAC per channel σ = 0.43σ = 0.52 Noise and linearity are evaluated with open input and with 14.9 MHz sine input. Nonlinearity ≈ 0.05 % ADCFEFIFO ADCFEFIFO … (36 ch total) … ADCFEFIFO ADCFEFIFO ADCFEFIFO ADCFEFIFO ADCFEFIFO … (36 ch total) … ADCFEFIFO ADCFEFIFO ADCFEFIFO Mezzanine board Main board Processor FPGA Output FIFOVME slave 2eSST etc. Each 160 MB/s i.e kHz 160 MB/s 1 MB 320 MB/s FE (Front-end processing): This includes acquisition buffer writing, point extraction, lookahead zero suppression, channel number & header insertion Channel data FIFO: 1024 words (16 bits + 2 flags, internal use only) XC3SD3400A-4 Frontend FPGA XC3S500E-4 12 total, 6 ch each The bottom line… Noise and nonlinearity Features 72 channels in a 6U VME64x/VXS module, $55 per channel Assembly option for 12 or 14 bits Up to 125 MSPS, internal or external sample clock Differential input 440 mV full scale Cable loss equalization Shaper/anti-alias filter 24 ns peaking Independent offset DAC per channel Preamp test pulser output Acquisition buffer: Dual-port circular buffer, 2048 points (19.5 μ s) FPGA-based signal processing 1 MB buffer and 2eSST readout Remote firmware upload (VME) opto-isolated I 2 C master (2×) cable to FEE Complete integrated readout and power system for FGT Current status 3 modules assembled & tested Interim firmware (FE deadtime, no block transfers) Deployed in support of CDC and FDC development Next steps: Full deadtimeless readout, 2eSST transfers Minor changed to layout (obsolence, crosstalk) Develop production test Pre-production run (20 modules) in early modules (+spares) in 2012 ADC (quad) frontend FPGA Crosstalk Single event 1000 pt readout *Corresponds to peaking time ≈33 ns for combined system (preamp, cable, ADC) Readout module for 2×12 APV (3072 det. channels) The PCB is 10 layers w/ 6 planes (3 GND), 0.003” buried capacitance. † GAS II: A Versatile Wire Chamber Readout ASIC. N. Dressnandt, N. Doshi, M. Newcomer., IEEE NSS System response Preamp + 18 m cable + ADC main FPGA analog line receiver / filter THERE ARE MANY ELEMENTS OF OLD POSTER HERE STILL TO BE CHANGED/DELETED!! to readout / control backplane (CPCI style) FEE Power Supply ±1.8V 2.5A remote reg. 0 – 360° clock phase shifter (4×) for APV & ADC