Nuclear masses and shell corrections of superheavy elements

Slides:



Advertisements
Similar presentations
Nuclear mass predictions for super-heavy nuclei and drip-line nuclei
Advertisements

Description of heavy nuclei masses by macro-micro models 1. Coworkers: Yu. Litvinov, A. Parkhomenko 2. Introduction 3. Considered models 4. Accuracy of.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
Testing isospin-symmetry breaking and mapping the proton drip-line with Lanzhou facilities Yang Sun Shanghai Jiao Tong University, China SIAP, Jan.10,
Isospin dependence and effective forces of the Relativistic Mean Field Model Georgios A. Lalazissis Aristotle University of Thessaloniki, Greece Georgios.
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
Upper limits on the effect of pasta on potential neutron star observables William Newton Michael Gearheart, Josh Hooker, Bao-An Li.
Pavel Stránský 29 th August 2011 W HAT DRIVES NUCLEI TO BE PROLATE? Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Alejandro.
ISOLDE workshop, CERN, November 2008 Correlations between nuclear masses, radii and E0 transitions P. Van Isacker, GANIL, France Simple nuclear mass formulas.
The Atomic Mass Evaluation: Present and Future WANG Meng Institute of Modern Physics, CAS ARIS2014, Tokyo, June 2.
Fusion-Fission Dynamics for Super-Heavy Elements Bülent Yılmaz 1,2 and David Boilley 1,3 Fission of Atomic Nuclei Super-Heavy Elements (SHE) Measurement.
Single Particle Energies
THE FISSION BARRIERS OF SUPERHEAVY AND EXOTIC NUCLEI Fedir A. Ivanyuk 1 and Krzysztof Pomorski 2 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical.
The ground state structure and alpha decay of Hs super- heavy isotopes Junqing Li (Institute of Modern Physics, CAS,Lanzhou) KITPC-CAS Relativistic many-body.
Description of α-decay of heavy and superheavy nuclei A. Sobiczewski and A. Parkhomenko Sołtan Institute for Nuclear Studies, Warsaw XII Nuclear Physics.
:12 (00) Below-barrier paths: multimodal fission & doughnut nuclei A. Staszczak (UMCS, Lublin) FIDIPRO-UNEDF collaboration meeting on nuclear.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
SH nuclei – structure, limits of stability & high-K ground-states/isomers 1.Equilibrium shapes 2.Fission barriers 3.Q alpha of Z= ( with odd and.
1 Properties of hypernuclei in the Skyrme Hartree-Fock method Xian-Rong Zhou Department of physics, Xiamen University, Xiamen, China Present Status of.
THE SHAPE TRANSITION IN ROTATING NUCLEI F. Ivanyuk 1, K. Pomorski 2 and J.Bartel 3 1 Institut for Nuclear Research, Kiev, Ukraine 2 Theoretical Physics.
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
The first systematic study of the ground-state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear.
Higher-Order Effects on the Incompressibility of Isospin Asymmetric Nuclear Matter Lie-Wen Chen ( 陈列文 ) (Institute of Nuclear, Particle, Astronomy, and.
Structures of Exotic 131,133 Sn Isotopes for r-process nucleosynthesis Shisheng Zhang 1,2 ( 张时声 ) 1. School of Physics and Nuclear Energy Engineering,
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effects in nuclear mass models Nuclear Structure and Related Topics (NSRT15), , DUBNA.
Rotation and alignment of high-j orbitls in transfermium nuclei Dr. Xiao-tao He College of Material Science and Technology, Nanjing University of Aeronautics.
Tensor force induced short-range correlation and high density behavior of nuclear symmetry energy Chang Xu ( 许 昌 ) Department of Physics, Nanjing Univerisity.
Alex Brown PREX Aug Neutron Radii and the Neutron Equation of State.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Ning Wang 1, Min Liu 1, Xi-Zhen Wu 2, Jie Meng 3 Isospin effect in Weizsaecker-Skyrme mass formula ISPUN14, , Ho Chi Minh City 1 Guangxi Normal.
1 11/20/ /10/2014 Jinniu Hu Stellar neutrino emission at finite temperature in relativistic mean field theory Jinniu Hu School of Physics, Nankai.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Isospin and mixed symmetry structure in 26 Mg DONG Hong-Fei, BAI Hong-Bo LÜ Li-Jun, Department of Physics, Chifeng university.
Probing the density dependence of symmetry energy at subsaturation density with HICs Yingxun Zhang ( 张英逊 ) China Institute of Atomic Energy JINA/NSCL,
Probing the isospin dependence of nucleon effective mass with heavy-ion reactions Momentum dependence of mean field/ –Origins and expectations for the.
Isotope dependence of the superheavy nucleus formation cross section LIU Zu-hua( 刘祖华) (China Institute of Atomic Energy)
Pygmy Dipole Resonance in 64Fe
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Ning Wang An improved nuclear mass formula Guangxi Normal University, Guilin, China KITPC , Beijing.
CERN ISOLDE, August 2009 NUCLEAR MASS MODELS Jirina Rikovska Stone Oxford University, University of Tennessee.
E. Sahin, G. de Angelis Breaking of the Isospin Symmetry and CED in the A  70 mass region: the T z =-1 70 Kr.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
WHY ARE NUCLEI PROLATE:
Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS.
Isovector reorientation of deuteron in the field of heavy target nuclei The 9th Japan-China Joint Nuclear Physics Symposium (JCNP 2015) Osaka, Japan, Nov.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
A FRESH LOOK AT THE SCISSION CONFIGURATION Fedir A. Ivanyuk Institut for Nuclear Research, Kiev, Ukraine Shape parameterisations The variational principle.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
1 Z.Q. Feng( 冯兆庆 ) 1 G.M. Jin( 靳根明 ) 2 F.S. Zhang ( 张丰收 ) 1 Institute of Modern Physics, CAS 2 Institute of Low Energy Nuclear Physics Beijing NormalUniversity.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Current Status of Nuclear Mass Formulae 1 RIBF-ULIC-Symposium: Physics of Rare-RI Ring, RIKEN, Nov , 2011 Hiroyuki KOURA Advanced Science Research.
Probe into the nuclear charge radii of superheavy and exotic nuclei via the experimental decay data Yibin Qian Department of Applied Physics, Nanjing University.
University of Liverpool, Liverpool, UK, July 7-9, 2014
China-Japan collaboration workshop,
Emmanuel Clément IN2P3/GANIL – Caen France
Nuclear masses of neutron-rich nuclei and symmetry energy
Weizsaecker-Skyrme mass model and the statistical errors
The role of fission in the r-process nucleosynthesis
Symmetry energy coefficients and shell gaps from nuclear masses
Superheavy nuclei: relativistic mean field outlook
Symmetry energy with non-nucleonic degrees of freedom
Rotation and alignment of high-j orbitls in transfermium nuclei
Variational Calculation for the Equation of State
第十四届核结构会议,2012年4月11-16,湖州师范学院
An improved nuclear mass formula
FISSION BARRIERS OF EXOTIC NUCLEI
The Mass and Isotope Distribution of Limiting Temperatures
Presentation transcript:

Nuclear masses and shell corrections of superheavy elements Ning Wang1, Min Liu1, Xi-Zhen Wu2, Jie Meng3 1 Guangxi Normal University, Guilin, China 2 China Institute of Atomic Energy, Beijing, China 3 Peking University, Beijing, China Introduction Macroscopic-microscopic mass models Shell gaps and shell corrections Summary & discussions “Interfacing Structure and Reaction Dynamics in the Synthesis of the Heaviest Nuclei” at the ECT*, Trento, Italy, September 1 - 4, 2015

r-process、 symmetry energy Super-heavy nuclei r-process、 symmetry energy To predict the ~ 4000 unknown masses based on the ~2353/2438 measured masses G. Audi, M. Wang, et al., Chin. Phys. C 36, 1287 (2012) H. Jiang, N. Wang, et al., Phys. Rev. C91(2015)054302

Central position of the island for SHE? Yu. Oganessian. SKLTP/CAS - BLTP/JINR July 16, 2014, Dubna Central position of the island for SHE? neutrons → Wang, Liang, Liu, Wu, Phys. Rev. C 82 (2010) 044304 Courtesy of Qiu-Hong Mo Mass models with rms error of ~300-600keV

Nuclear mass models Global Local Systematics Garvey-Kelson n-p residual ab initio Shell model … Microscopic Macro-Micro Duflo-Zuker … AME CLEAN RBF … Non-relativistic & relativistic energy density functional , more fundamental, can describe not only the properties of finite nuclei but also those of neutron stars

☺ Macroscopic-Microscopic: Strutinsky type: (shell corrections) Finite range droplet model (FRDM): [M, β, Bf,…] Extended Thomas-Fermi+SI (ETFSI): [M, EOS, β, Bf,…] Lublin-Strasbourg Drop (LSD) model: [M, β, Bf,…] Weizsäcker-Skyrme (WS) formula: [M, β, Rch,…] … … Others : Esh from valence-nucleons: Kirson, NPA798 (2008) 29 Dieperink & Isacker, EPJA 42 (2009) 269 Wigner-Kirkwood method: Centelles, Schuck, Vinas, Anna. Phys. 322 (2007) 363; Bhagwat, et al.,PRC81_044321 KUTY model: Koura, Uno, Tachibana, Yamada, NPA674(2000)47 … …

n-p residual interaction Isobaric Multiplet Mass Equation …… ۞ Local mass formulas: Garvey-Kelson n-p residual interaction Isobaric Multiplet Mass Equation …… Garvey, Gerace, Jaffe, Talmi, Kelson, Rev. Mod. Phys. 41 (1969) S1 Barea, Frank, Hirsch, Isacker, et al, Phys. Rev. C 77 (2008) 041304(R) N Z Y. M. Zhao, et al., Phys. Rev. C82-054317; Phys. Rev. C84-034311; Phys. Rev. C85-054303; …

Mass predictions from local mass equations by using iterations errors increase rapidly with iterations 1)error of local mass equations, ~100keV 2)predicted masses are used in new iteration MeV Morales et al. , Nucl. Phys. A 828 (2009) 113 Morales, et al., Phys. Rev. C 83, 054309 (2011)

Image reconstruction techniques Morales, Isacker, Velazquez, Barea, et al., Phys. Rev. C 81(2010)024304 CLEAN deconvolution the aim is to select those Fourier components that best explain the observed patterns of the image

Radial Basis Function (RBF) corrections leave-one-out cross-validation Revised masses Wang & Liu, Phys. Rev. C 84, 051303(R) (2011)

RBF corrections for different mass models N. Wang and M. Liu, J. Phys: Conf. Seri. 420 (2013) 012057

AME2012 Z. M. Niu, et al., Phys. Rev. C 88 (2013) 024325

Nuclear mass tables WS mass tables http://www.imqmd.com/mass/ HFB mass tables http://www-astro.ulb.ac.be/bruslib/nucdata/ AME2012 http://amdc.impcas.ac.cn/evaluation/data2012/ame.html Compilation of mass measurements http://nuclearmasses.org/

S. Goriely J. M. Pearson

Why is the difference so large for neutron-rich nuclei ?

Macroscopic-microscopic mass models 1. Liquid-drop formula ‘semi-empirical mass formula’ of von Weizsäcker in 1935 www.nupecc.org EOS symmetric Mirror nuclei EOS asymmetric Liang, et al., Nucl. Phys. Rev. 28 (2011)1

Parabolic approximation for small deformations 2. Liquid Drop Energy of nuclei with sharp surface (at small deformations) Myers & Swiatecki, Nucl. Phys. 81 (1966) 1 Volume term Surface term Coulomb term Parabolic approximation for small deformations

Parabolic approx. for the deformation energies Skyrme energy density functional + ETF2 Parabolic approximation can significantly reduce the CPU time

The values of g1 and g2 can be obtained by known masses Nuclear surface diffuseness and its isospin dependence result in the deformation energies complicated

Isospin dependence of the surface diffuseness  Deformation dependence of the symmetry energy coefficients of nuclei Skyrme energy density functional + ETF2 Mo, Liu, Chen, Wang, Sci. China - Phys. Mech. Astron. 58 (2015) 082001

Deviations from experimental data Myers & Swiatecki, Nucl. Phys. 81 (1966) 1 Lunney, Pearson, Thibault, Rev. Mod. Phys. 75 (2003) 1021

Shell effects are evident at magic numbers

3. Strutinsky shell correction Strutinsky & Ivanjuk, Nucl. Phys. A255 (1975) 405 p Pomorski, Comp. Phys. Comm.174(2006)181 Diaz-Torres, Phys. Lett. B594 (2004) 69 : energy smoothing parameter p : order of Gauss–Hermite

Woods-Saxon potential symmetry potential Cwoik, Dudek, et al., Comput. Phys. Commun. 46 (1987) 379

4. Weizsäcker-Skyrme mass formula Liquid drop Deformation Shell Residual Residual:Mirror 、pairing 、Wigner corrections... Macro-micro concept & Skyrme energy density functional PRC81-044322; PRC82-044304; PRC84-014333

Isospin dependence of model parameters Symmetry energy coefficient Symmetry potential Strength of spin-orbit potential Pairing corr. term symmetry potential WS3:Phys.Rev.C84_014333

5. Isospin dependence of surface diffuseness Neutron-rich N. Wang, M. Liu, X. Z. Wu, and J. Meng, Phys. Lett. B 734 (2014) 215

Potential energy surface around ground state deformations WS By setting different initial values, one can find the lowest energy are considered

Determination of model parameters: Simulated annealing global minimum Greedy algorithm local minimum

9 y 13 y 4 y Rms (keV) FRDM HFB24 WS WS4 654 549 525 298 31 30 13 18 Rms error Rms (keV) FRDM HFB24 WS WS4 To known masses 654 549 525 298 Number of model para. 31 30 13 18

Predictive power for new masses AME2012 M(WS3) – M(exp.) Predictive power for new masses AME2012 rmsD (in keV) WS3 FRDM DZ28 HFB17 sigma (M)2149 336 656 360 581 sigma (M)219 424 765 673 648

For new masses after 2012

Shell gaps

New magic numbers Wienholtz, et al., Nature 498 (2013)346

Shell structure in heavy and super-heavy nuclei 108 Mo, Liu, Wang, Phys. Rev. C 90, 024320 (2014)

Shell corrections N=16 Emic (FRDM): ground state microscopic energy WS* Emic (FRDM): ground state microscopic energy

FRDM WS* KSO = -1 KSO = 1 WS4, Phys. Lett. B 734 (2014) 215 Xu & Qi, Phys. Lett. B724 (2013) 247

Symmetry energy coefficient and symmetry potential I=(N-Z)/A NPA818 (2009) 36 Wang & Liu, PRC81, 067302

Influence of potential parameters on the shell corrections Radius of potential Surface diffuseness Depth of potenital Symmetry potential Spin-orbit potential

142 152 162

Summary The rms deviations of mass models with respect to known masses fall to about 200 keV (local) and 300-600 keV (global) . For super-heavy nuclei and drip line nuclei, model uncertainty increases rapidly. Isospin dependence of model parameters (such as symmetry potential and spin-orbit potential) influences the new magic numbers and shell corrections of SHE. The shell gap is a sensitive quantity to test mass models. WS formula indicates N=142, 152, 162, 178; Z=92, 100, 108, 120 could be sub-shell closure in super-heavy region, in addition to traditional magic numbers Z=114, N=184.

Thank you for your attention Differences make the world more beautiful

Discussions Nuclear deformations and radii Uncertainty of model predictions Fission barrier Symmetry energy coefficients Other corrections … …

Quadrupole Deformations Oblate Quadrupole Deformations Prolate

Comparison of nuclear Quadrupole deformations WS FRDM Zhu Li,Bao-Hua Sun

Comparison of nuclear Octupole deformations deformations can also be included in the WS calculations

Deformation energies

Rms charge radii N. Wang, T. Li, Phys. Rev. C88, 011301(R)

RMF: Lalazissis, Raman, and Ring, At. Data Nucl RMF: Lalazissis, Raman, and Ring, At. Data Nucl. Data Tables 71, 1 (1999)

Nuclear charge radii from WS* model Angeli & Marinova, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055108 For 286114 and 290116, rch = 6.24±0.14 and 6.13±0.16 fm from the α-decay data WS* results: 6.17 and 6.19 fm Ni, Ren, Dong, Qian, Phys. Rev. C 87, 024310 (2013)

Uncertainty of Model predictions Model errors increase for drip line nuclei

Litvinov, Palczewski, Cherepanov, Sobiczewski, Acta Phys. Polo Litvinov, Palczewski, Cherepanov, Sobiczewski, Acta Phys. Polo. B 45 (2014) 1979

Oganessian & Utyonkov, Nucl. Phys. A (2015) (in press)

Fission barrier Z=114, A=298 Sobiczewski, Pomorski, Prog. Part. Nucl. Phys. 58 (2007) 292

Comparison of Bf and Esh For Z=114-120 region Kowal,et al., Phys. Rev. C 82_014303

Symmetry energy coefficients of nuclei Parabolic law for drip line nuclei? Liu, Wang, Li, Zhang, Phys. Rev. C 82_064306

Symmetry energy coefficients of finite nuclei from Skryme energy density functional + ETF

Convergence test for the higher order terms

N. Wang, M. Liu, H. Jiang, J. L. Tian, Y. M. Zhao, Phys. Rev N. Wang, M. Liu, H. Jiang, J. L. Tian, Y. M. Zhao, Phys. Rev. C 91, 044308 (2015)

Influence of the coefficient of fourth order terms Nbound Jiang, Wang, et al., Phys. Rev.C 91, 054302 (2015)

Residual – Mirror corr. reduces rms error by ~10% with the same mass but with the numbers of protons and neutrons interchanged Residual – Mirror corr. reduces rms error by ~10% charge-symmetry / independence of nuclear force

Residual – Wigner corr. of heavy nuclei (N,Z) N=Z K. Mazurek, J. Dudek,et al., J. Phys. Conf. Seri. 205 (2010) 012034