Tübingen, 18.9.2007Hydrogen-Deficient Stars1 O(He) Stars Thomas Rauch Elke Reiff Klaus Werner Jeffrey W. Kruk Institute for Astronomy and Astrophysics.

Slides:



Advertisements
Similar presentations
Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G Arxiv: Fumiyoshi Kamitukasa et al.
Advertisements

Barbara G. Castanheira S. O. Kepler, D. Winget, J.J. Hermes, K. Bell, … University of Texas at Austin McDonald Observatory.
The importance of the remnant’s mass for VLTP born again times Marcelo Miguel Miller Bertolami Part of the PhD thesis work (in progress) under the supervision.
Spectral Classification: The First Step in Quantitative Spectral Analysis Richard Gray Appalachian State University.
18. August 2010EUROWD10, Tuebingen Two Planetary Nuclei with Recent Mass-Loss Events: V605 Aquilae & Longmore 4 Howard E. Bond Space Telescope Science.
Spectral Study of CAL87 Ken Ebisawa (JAXA/ISAS) Dai Takei (Rikkyo University) Thomas Rauch (University of Tuebinen) 1Spectral Study of CAL87.
The UV Spectra of the WELS Wagner L. F. Marcolino (1,2) Francisco Xavier de Araujo (2) Helson B. M. Junior (2,3) Eduardo S. Duarte (3) (1) Laboratoire.
AGB star intershell abundances inferred from analyses of extremely hot H-deficient post-AGB stars Klaus Werner Institut für Astronomie und Astrophysik.
Institute for Astronomy and Astrophysics, University of Tübingen 13 July 2007X-ray Grating Spectroscopy Cambridge, USA 1 X-ray Photospheres Klaus Werner.
Mike Crenshaw (Georgia State University) Steve Kraemer (Catholic University of America) Jack Gabel (University of Colorado) NGC 4151 Mass Outflows from.
COOL STARS and ATOMIC PHYSICS Andrea Dupree Harvard-Smithsonian CfA 7 Aug High Accuracy Atomic Physics In Astronomy.
Mass Loss from Red Giant Branch (and AGB) Stars in Globular Clusters Andrea Dupree Harvard-Smithsonian Center for Astrophysics AGB Workshop: 20 May 2010.
Astronomers Discover Stars With Carbon Atmospheres Released at November 21, 2007 P. Dufour, J. Liebert, G. Fontaine, N. Behara published the results in.
Post Main Sequence Evolution PHYS390 (Astrophysics) Professor Lee Carkner Lecture 15.
Post-AGB evolution. Learning outcome evolution from the tip of the AGB to the WD stage object types along the post-AGB evolution basics about planetary.
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
Nov. 6, 2008Thanks to Henrietta Leavitt Cepheid Multiplicity and Masses: Fundamental Parameters Nancy Remage Evans.
An ultraviolet spectral library of metal-poor OB stars C. J. Evans 1, D. J. Lennon 1, N. R. Walborn 2, C. Trundle 1,3, S. A. Rix 1 1) Isaac Newton Group,
CS15 St. Andrews, July 2008 Winds in Symbiotic Red Giants: A Perspective from the Base of Outflow Cian Crowley School of Physics Trinity College Dublin.
Institute for Astronomy and Astrophysics, University of Tübingen, Germany July 5, 2004Cool Stars, Stellar Systems and the Sun (Hamburg, Germany)1 Turning.
Vadim Burwitz EPIC Cal., Nov 6, 2007 Update on the Low Energy Isolated Neutron Star and White Dwarf Cross-Calibration Standards Vadim Burwitz EPIC Calibration.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
Anyone Out There? Post-AGB Stars in the Galactic Halo S. Weston, R.Napiwotzki & S. Catalán University of Hertfordshire, UK.
September 18, 2007Hydrogen-Deficient Stars, Tuebingen Transient Mass-Loss Events in the PG 1159  [WCE] Central Star of Longmore 4 Howard E. Bond Space.
200 MG 500 MG TheoryObservation Authors Institutes RE J is a hydrogen rich strongly magnetic white dwarf discovered as an EUV source by the ROSAT.
Hunting down the subdwarf populations Peter Nemeth KU Leuven, Belgium Bamberg, Germany; Sep 13, 2013.
Kepler Center for Astro and Particle Physics, University of Tübingen Mar 30, 2009Recent Directions in Astrophysical Quantitative Spectroscopy and Radiation.
The ionization structure of the wind in NGC 5548
“ Analysis and interpretation of stellar spectra and nucleosynthesis processes in evolved stars ” D. A. García-Hernández (IAC Support Astronomer) Instituto.
Non-LTE in Stars The Sun Early-type stars Other spectral types.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
Element abundances in PG1159 stars Klaus Werner, Thomas Rauch, Elke Reiff University of Tübingen, Germany and Jeffrey W. Kruk Johns Hopkins University,
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Spectroscopy: High angular resolution with selectable spectral resolution (or addressing the scientific problem with the optimal sampling)
Class Goals Familiarity with basic terms and definitions Physical insight for conditions, parameters, phenomena in stellar atmospheres Appreciation of.
The White Dwarf in SS Cygni: FUSE + HST Spectral Analysis Edward M. Sion, Patrick Godon, Janine Myszka Edward M. Sion, Patrick Godon, Janine Myszka Department.
A Spectroscopic Survey of Bright DA(…) White Dwarfs Alexandros Gianninas, Pierre Bergeron Université de Montréal Jean Dupuis Canadian Space Agency Maria.
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
A cosmic abundance standard Fernanda Nieva from massive stars in the Solar Neighborhood Norbert Przybilla (Bamberg-Erlangen) & Keith Butler (LMU)
Element abundances of bare planetary nebula central stars and the shell burning in AGB stars Klaus Werner Institut für Astronomie und Astrophysik Universität.
Zorro and the nature of SNe Ia Paolo A. Mazzali Max-Planck Institut für Astrophysik, Garching Astronomy Department and RESearch Centre for the Early Universe,
Investigation of different types radio sources by IPS method at 111MHz S.A.Tyul’bashev Pushchino Radio Astronomy Observatory, Astro Space Center of P.N.Lebedev.
Institut für Astronomie und Astrophysik, Universität Tübingen 25 April 2006Isolated Neutron Stars London 1 Non-LTE modeling of supernova-fallback disks.
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Mike Crenshaw (Georgia State University) Steve Kraemer (Catholic University of America) Mass Outflows from AGN in Emission and Absorption NGC 4151.
Institute for Astronomy and Astrophysics, University of Tübingen 16 Aug th European White Dwarf Workshop Tübingen, Germany 1 HST / COS Spectroscopy.
Planetary nebulae beyond the Milky Way - May , Magellanic Cloud planetary nebulae as probes of stellar evolution and populations Letizia Stanghellini.
Spectroscopic Analysis of the mid-IR excesses of WDs Jana Bilikova 1 You-Hua Chu 1, Kate Su 2, Robert Gruendl 1, et al. 1 U. of Illinois at Urbana-Champaign,
DEPARTMENT OF PHYSICS AND ASTRONOMY PhD Recruitment Day – 31 st Jan 2007 The unidentified FUV lines of hydrogen deficient dwarfs David Boyce M. A. Barstow,
IAU Symposium No. 224 The A-Star Puzzle Observations of non-magnetic CP stars Glenn M. Wahlgren Lund Observatory.
Hunting down the subdwarf populations Peter Nemeth Roy Østensen and Joris Vos KU Leuven, Belgium; In collaboration with Stephane Vennes and Adela Kawka.
X-ray observation of the Cygnus Loop with Suzaku and XMM-Newton
The Stratification of Metals in Hot White Dwarf Atmospheres N.J. Dickinson, M.A. Barstow, I. Hubeny * * Steward Observatory, University of.
FUSE spectroscopy of cool PG1159 Stars Elke Reiff (IAAT) Klaus Werner, Thomas Rauch (IAAT) Jeff Kruk (JHU Baltimore) Lars Koesterke (University of Texas)
Institute for Astronomy and Astrophysics, University of Tübingen, Germany June 29, 2005Planetary Nebulae as Astronomical Tools, Gdansk, Poland1 Light and.
Tubingen, September, Optical spectroscopy of the born- again Sakurai's object in 1996 Igor Savanov Simon Jeffery Don Pollacco Denis Shulyak.
Fluorine in RCB and EHe Stars. ► RCB stars comprise a sequence of H-deficient supergiants with effective temperatures from about 3500 K, as represented.
A540 – Stellar Atmospheres Organizational Details Meeting times Textbook Syllabus Projects Homework Topical Presentations Exams Grading Notes.
Lecture 10: Bubbles and PNe September 26, III. Conduction Layer - Probe the thermal conduction layer High ions produced by thermal collisions O.
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
Exploring the diffusion induced nova scenario Marcelo Miguel Miller Bertolami Leandro Gabriel Althaus (FCAGLP-UNLP/IALP CONICET, Argentina) Exploring the.
Spectroscopy and the evolution of hot subdwarf stars
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Exploring the diffusion induced nova scenario
Keck Observations of Two Supernovae Hours After Explosion Shock-Breakout Flash Spectroscopy as a New Window into the Evolution and Death of Massive Stars.
HST/COS Observations of O(He) Stars
Planetary Nebula abundances in NGC 5128 with FORS
Presentation transcript:

Tübingen, Hydrogen-Deficient Stars1 O(He) Stars Thomas Rauch Elke Reiff Klaus Werner Jeffrey W. Kruk Institute for Astronomy and Astrophysics Kepler Center for Astro and Particle Physics Eberhard-Karls University Tübingen Germany

Tübingen, Hydrogen-Deficient Stars2 Overview O(He) stars spectral analyses evolutionary scenario

Tübingen, Hydrogen-Deficient Stars3 O(He) Stars spectral sub-type O(He) by Méndez et al. (1986) –spectra dominated by He II absorption lines CSPN K 1-27 CSPN LoTr 4 HS HS HS preliminary analysis NLTE analysis by Rauch et al. 1998

Tübingen, Hydrogen-Deficient Stars5 O(He) Photospheric Parameters T eff / kK log g H/He C/He N/He O/He CSPN K < 0.2 < CSPN LoTr < < HS HS < 0.2 Rauch et al. 1998, A&A 338, 651 based on optical, UV (IUE), and X-ray (ROSAT) spectra

O(He) stars found amongst PG 1159 stars two pairs of spectroscopic twins –HS LoTr 4 –HS K 1-27 no PN PN

Tübingen, Hydrogen-Deficient Stars7 O(He) CSPN construction of consistent models CS + PN –NLTE model-atmosphere fluxes used as ionizing spectra in photoionization models H  [O III ] K 1-27 LoTr 4

Tübingen, Hydrogen-Deficient Stars8 K 1-27 (PN G ) Rauch, Köppen, Werner 1994, A&A 286, 543 –O(He) CSPN T eff = 105 kK log g = 6.5 (cgs) H/He < 0.2 possible born again star! M = 0.55 M  d = 1.3 kpc –PN solar abundances M = M  possible born again PN? t exp << t evol N 54eV much too low

Tübingen, Hydrogen-Deficient Stars9 LoTr 4 (PN G ) Rauch, Köppen, Werner 1996, A&A 310, 613 –O(He) CSPN T eff = 120 kK log g = 5.5 (cgs) H/He = 0.5 possible born again star! M = 0.65 M  d = 6 kpc –PN Solar abundances M = 0.29 M  normal PN t exp >> t evol

Tübingen, Hydrogen-Deficient Stars10 Evolutionary Status of O(He) Stars AGB [WC] sdO(He) PG 1159 O(He) DA DO our picture 1998 ? ? ? ??

Tübingen, Hydrogen-Deficient Stars11 Evolution of O(He) Stars Evolutionary models (e.g. Herwig et al. 1999) –PG 1159 abundances (He:C:O=33:50:17 by mass) are result of late He-shell flash –O(He) cannot be explained

Tübingen, Hydrogen-Deficient Stars12 O(He) vs. RCrB T eff / kK log g H/He C/He N/He O/He K < 0.2 < LoTr < < HS HS < 0.2 RCrB < V 854 Cen

Tübingen, Hydrogen-Deficient Stars13 Evolution of O(He) Stars evolutionary models (e.g. Herwig et al. 1999) –PG 1159 abundances (He:C:O=33:50:17 by mass) are result of late He-shell flash –O(He) cannot be explained third post-AGB evolutionary sequence? –hydrogen-rich –hydrogen-deficient ( [WC] – PG 1159 – DO ) –hydrogen-deficient ( RCrB – O(He) – DO ) ?

Tübingen, Hydrogen-Deficient Stars14 Spectroscopy of O(He) Stars high T eff  flux maximum in the EUV precise NLTE spectral analysis needs –metal lines (of highly ionized species) ionization equilibria  T eff abundances –high S/N, high resolution UV spectra IUE ÅR < ÅR < ÅR < FUSE ÅR 

Tübingen, Hydrogen-Deficient Stars15 HST + FUSE Spectroscopy photospheric spectra characterized by a few, broad and shallow, absorption lines from highly ionized species e.g. He II, C IV, O VI, Si IV

Tübingen, Hydrogen-Deficient Stars16 UV Observations HST GHRS (Cy06) + STIS –Cy06: if C and N deficient  lines not visible –Cy07: optical analyses will answer questions –Cy08: line profiles mainly sensitive to velocity field –Cy09: data analysis not well described –Cy10: not as compelling as other proposals –Cy11: unclear how precise the abundances have to be (changed PI: Werner) –Cy12: these objects are only a small group in WDs – general interest not clear –Cy13: accepted (added “successors of RCrB stars?” to title) first observations scheduled for Aug 9, 2004 STIS failure Aug 3, 2004

September 18, 2007Hydrogen-Deficient Stars17 Longmore 4

Tübingen, Hydrogen-Deficient Stars18 UV Observations FUSE –Cy03: accepted ( 25 ksec) –Cy06: abundances of 4 stars will not fit a clear pattern (204 ksec) –Cy07: no good justification to repeat for higher S/N (204 ksec) –Cy08: accepted (only 3 stars, 204 ksec) observations scheduled for summer 2007 FUSE failure July 12, 2007

Rauch Thomas, heard about the new wheel failure of FUSE today? They have to terminate the mission.

Tübingen, Hydrogen-Deficient Stars20 FUSE resolution reduced to 7Å

Tübingen, Hydrogen-Deficient Stars21

Tübingen, Hydrogen-Deficient Stars22

Tübingen, Hydrogen-Deficient Stars23 static models

Tübingen, Hydrogen-Deficient Stars24 “wind” models radiation-driven mass-loss rates (Pauldrach et al. 1988)

Tübingen, Hydrogen-Deficient Stars25 mass-loss rates from Pauldrach X 10

Tübingen, Hydrogen-Deficient Stars26 mass-loss rates from Pauldrach X 30

Tübingen, Hydrogen-Deficient Stars27 thin: no iron-group elements thick:iron-group, solar abundances

Tübingen, Hydrogen-Deficient Stars28 red: no iron-group elements blue:iron-group, 10 X solar abundances

Tübingen, Hydrogen-Deficient Stars29 Models with Fe group lines

Tübingen, Hydrogen-Deficient Stars30

HS

Tübingen, Hydrogen-Deficient Stars32 Conclusions mass-loss rates of O(He) stars are not higher than predicted by radiation-driven wind theory  change of surface composition due to wind unlikely FUSE spectra do not show isolated metal lines and thus, allow to give only upper limits for abundances iron-group abundances are (probably) solar UV spectroscopy will be performed with COS / STIS? –determination of C, N, O, and Si abundances to corroborate link to RCrBs

Tübingen, Hydrogen-Deficient Stars33 Miller Bertolami & Althaus, 2006, A&A, 454, 845 M = 0.512M ʘ post early-AGB star “numerical experiment” increased mass-loss rates  hydrogen deficiency

Tübingen, Hydrogen-Deficient Stars34 Conclusions II low-mass O(He) stars –post early-AGB stars –first thermal pulse (TP) after departure from AGB –higher mass-loss rates  hydrogen deficiency high-mass O(He) stars –“normal” born-again scenario –(V)LTP  hydrogen deficiency alternative O(He) scenario –double-degenerate merger similar H/He surface composition suggests that the O(He) stars are the progeny of RCrB stars –RCrB  O(He)  non-DA WD

KPD is a successor of high-mass O(He) stars? “Truth suffers from too many analysis.” Ancient Fremen Saying, Dune Messiah