Sergey Volkov SINP MSU, Moscow

Slides:



Advertisements
Similar presentations
Feynman Diagrams Feynman diagrams are pictorial representations of
Advertisements

Work done in collaboration with Stefano Frixione 1 Leonardo Bertora, 2004 April 14 Jet and Di-jet production in Photon–Photon collisions Leonardo Bertora.
Vertex Function of Gluon-Photon Penguin Swee-Ping Chia High Impact Research, University of Malaya Kuala Lumpur, Malaysia
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
A novel approach to include pp Coulomb force into the 3N Faddeev calculations H. Witała, R. Skibiński, J. Golak Jagiellonian University W. Gloeckle Ruhr.
Some questions on quantum anomalies Roman Pasechnik Moscow State University, Moscow & Bogoliubov Lab of Theoretical Physics, JINR, Dubna 46-th Cracow School.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture V.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Gerard ’t Hooft Spinoza Institute Yukawa – Tomonaga Workshop, Kyoto, December 11, 2006 Utrecht University.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Two-Loop Decoupling Coefficients for  s within MSSM Outline Motivation Two-Loop Decoupling Coefficients within MSSM Phenomenological Results Luminita.
Antonio RagoUniversità di Milano Techniques for automated lattice Feynman diagram calculations 1 Antonio RagoUniversità di Milano Techniques for automated.
NRQCD as an Effective Field Theory Ron Horgan DAMTP, University of Cambridge Ron Horgan DAMTP, University of Cambridge Royal Society Meeting Chicheley.
An Introduction to Field and Gauge Theories
Many-body Green’s Functions
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
FKK 2010, St. Petersburg, Precision calculations of the hyperfine structure in highly charged ions Andrey V. Volotka, Dmitry A. Glazov, Vladimir.
QUARK LOOP EFFECTS ON THE GLUON PROPAGATOR Workshop on Confinement Physics March 12-15, Jefferson Lab Arlene Cristina Aguilar Centre for Natural.
1 T-odd asymmetries in top-quark decay Hiroshi Yokoya (Niigata U) KEKPH2007 3/1-3 (2007), KEK in collaboration with Kaoru Hagiwara (KEK) and Kentarou Mawatari.
Announcements Homework returned now 9/19 Switching to more lecture-style class starting today Good luck on me getting powerpoint lectures ready every day.
Yang-Mills Theory in Coulomb Gauge H. Reinhardt Tübingen C. Feuchter & H. R. hep-th/ , PRD70 hep-th/ , PRD71 hep-th/ D. Epple, C. Feuchter,
Announcements 10/22 Today: Read 7D – 7F Wednesday: 7.3, 7.5, 7.6 Friday: 7.7, 9, 10, 13 On Web Exam 1 Solutions to Exam 1.
Numerical approach to multi- loop integrals K. Kato (Kogakuin University) with E. de Doncker, N.Hamaguchi, T.Ishikawa, T.Koike, Y. Kurihara, Y.Shimizu,
Russian Academy of Science Franco-Russia Forum Dec Denis Perret-Gallix CNRS ACPP Automated Calculation in Particle Physics France-Japan-Russia.
A finite element approach for modeling Diffusion equation Subha Srinivasan 10/30/09.
1 Some Field Theoretical Issues of the Chiral Magnetic Effect Hai-cang Ren The Rockefeller University & CCNU with De-fu Hou, Hui Liu JHEP 05(2011)046 CPODD.
1 Noncommutative QCDCorrections to the Gluonic Decays of Heavy Quarkonia Stefano Di Chiara A. Devoto, S. Di Chiara, W. W. Repko, Phys. Lett. B 588, 85.
The last talk in session-3. Full one-loop electroweak radiative corrections to single photon production in e + e - ACAT03, Tsukuba, 4 Dec LAPTH.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Unintegrated parton distributions and final states in DIS Anna Stasto Penn State University Work in collaboration with John Collins and Ted Rogers `
Serge Andrianov Theory of Symplectic Formalism for Spin-Orbit Tracking Institute for Nuclear Physics Forschungszentrum Juelich Saint-Petersburg State University,
Higher Order Electroweak Corrections for Parity Violating Analog of GDH Sum Rule Krzysztof Kurek Andrzej Sołtan Institute for Nuclear Studies, Wasaw In.
Limitations of Partial Quenching Stephen Sharpe and Ruth Van de Water, University of Washington, Seattle QCD with 3 flavors (u, d, s) possesses an approximate.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #4.
L.D. Blokhintsev a, A.N. Safronov a, and A.A. Safronov b a Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia b Moscow State.
1 Renormalization Group Treatment of Non-renormalizable Interactions Dmitri Kazakov JINR / ITEP Questions: Can one treat non-renormalizable interactions.
Markus Quandt Quark Confinement and the Hadron Spectrum St. Petersburg September 9,2014 M. Quandt (Uni Tübingen) A Covariant Variation Principle Confinement.
ERT 210/4 Process Control & Dynamics DYNAMIC BEHAVIOR OF PROCESSES :
An Introduction to Lattice QCD and Monte Carlo Simulations Sinya Aoki Institute of Physics, University of Tsukuba 2005 Taipei Summer Institute on Particles.
Automated Calculation Scheme for α n Contributions of QED to Lepton g-2: Diagrams without Lepton Loops M. Nio ( RIKEN) Feb. 7, 2006 KEK 大型シミュレーション研究ワークショップ.
The Fubini-Furlan-Rossetti sum rule. LET.
Concepts of the Standard Model: renormalisation FK8022, Lecture 2 Core text: Quarks and leptons: an introductory course in modern physics, Halzen and Martin.
Convergence of chiral effective theory for nucleon magnetic moments P. Wang, D. B. Leinweber, A. W. Thomas, A. G. Williams and R. Young.
From 3-Geometry Transition Amplitudes to Graviton States Federico Mattei joint work with: Carlo Rovelli, Simone Speziale, Massimo Testa LOOPS ’
E. Todesco, Milano Bicocca January-February 2016 Appendix B: A digression on divergences in electromagnetism and lengths in atomic physics Ezio Todesco.
2006 5/19QCD radiative corrections1 QCD radiative corrections to the leptonic decay of J/ψ Yu, Chaehyun (Korea University)
Accurate vacuum correction in finite nuclei A. Haga 1, H. Toki 1, S. Tamenaga 1, and Y. Horikawa 2 1.RCNP, Osaka Univ. 2.Juntendo Univ.
DVCS Radiative Corrections C. Hyde Old Dominion University, Norfolk, VA (and update to come) Hall A DVCS Collaboration.
Precise prediction for ILC experiment HAN, Liang Univ. of Science &Technology of China ( on behalf of U.S.T.C Hep Phenomenology Group )
Lecture 4 – Quantum Electrodynamics (QED)
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Forces and Interactions The four forces in Nature Exchange particles mediate interactions Feynman diagrams: A graphical view into particle interactions.
The bound-electron g factor in light ions
Transfer Functions Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: The following terminology.
The Analysis of Elastic pp Scattering in the Forward Direction for PAX Experiment Energy Range. S.B. Nurushev, M.F. Runtso, Moscow Engineering Physics.
Quantum Mechanics for Applied Physics
Handout 3 : Interaction by Particle Exchange and QED
Observation of a “cusp” in the decay K±  p±pp
Radiative Corrections to Bremsstrahlung in Radiative Return
Lecture 2 Evolution and resummation
K Kato, E de Doncker, T Ishikawa and F Yuasa ACAT2017, August 2017
Chapter V Interacting Fields Lecture 7 Books Recommended:
Adnan Bashir, UMSNH, Mexico
Adnan Bashir, UMSNH, Mexico
Review of Interacting Felds and Feynman Digrams
Nuclear Forces - Lecture 3 -
Lecture 2: Invariants, cross-section, Feynman diagrams
Renormalizable Expansion for Nonrenormalizable Theories
Radiative corrections in Kl3 decays
Presentation transcript:

Sergey Volkov SINP MSU, Moscow A Simple Subtraction Procedure for Calculation of the Anomalous Magnetic Moment of the Electron in QED Sergey Volkov SINP MSU, Moscow

fUV-free=(1-K1)(1-K2)…(1-Kn)f Bogoliubov-Parasiuk theorem [1956] Removal of ultraviolet divergences by R-operation (defined by recurrence relations). Forest formula: V. Scherbina [1964], O. Zavyalov, B. Stepanov [1965], W. Zimmermann [1969]. “BPHZ renormalization”. fUV-free=(1-K1)(1-K2)…(1-Kn)f Kj transforms Feynman amplitude of j-th divergent subgraph (Gj) into it’s Taylor expansion up to ω(Gj) order at 0 (in momentum representation). All terms with overlapping elements must be removed. ω(G) = degree of UV divergence = 4-Nμ-(3/2)Ne UV-divergences are removed in Schwinger-parametric representation point-by-point, before integration, if iε in propagator denominators is fixed (ε>0). Schwinger parameters: 1/(x+iε)=(1/i)·ʃ0+∞eiα(x+iε)dα ε→0 => IR-divergences.

AMM of the electron (theory and experiment) The measured value [2011]: ae=0.00115965218073(28) The most accurate prediction (T. Kinoshita et al. [2015]): ae=0.001159652181643(25)(23)(16)(763) (α-1=137.035999049(90) – from experiments with rubidium atoms) Uncertainties come from: T. Aoyama, M. Hayakawa, T. Kinoshita, M.Nio, Tenth-Order Electron Anomalous Magnetic Moment – Contribution of Diagrams without Closed Lepton Loops, Physical Review D, 2015, V. 91, 033006. My method was developed for computing

Universal QED contributions J. Schwinger [1948], analytically: R. Karplus, N. Kroll [1949] – with a mistake A. Petermann [1957], C. Sommerfield [1958], analytically: ~1965…~1975, 3 loops, numerically: 1. M. Levine, J. Wright. 2. R. Carroll, Y. Yao. 3. T. Kinoshita, P. Cvitanović. T. Kinoshita, P. Cvitanović [1974]: E. Remiddi, S. Laporta et al., ~1965…1996, analytically: T. Kinoshita et al., numerically, 1981…2015: T. Kinoshita et al., numerically, 2012…2015:

The subtraction procedure FULLY AUTOMATED AT ANY ORDER OF PERTURBATION. UV and IR divergences are eliminated point-by-point in Feynman-parametric space for each individual Feynman diagram. No regularization is required. Subtraction by a forest formula with linear operators. Each operator transforms Feynman amplitude of some UV-divergent subdiagram G’ (in momentum space) to the polynom with the degree that is less or equal to ω(G’). The subtraction is equivalent to the on-shell renormalization => no residual renormalizations, no calculations of renormalization constants, no other manipulations.

Anomalous magnetic moment: definition p-q/2 p+q/2 (renormalized) q

Operators A – projector of AMM U – intermediate operator p-q/2 p+q/2 p p q A – projector of AMM U – intermediate operator U preserves the Ward identity! For other types of divergent subgraphs, U=Taylor expansion at 0 up to ω order. L – on-shell renormalization for vertex-like subgraphs

Forest formula for AMM A set of subgraphs of a diagram is called a forest if any two elements of this set don’t overlap. F[G] – the set of all forests of UV-divergent subgraphs in G that contain G. I[G] – the set of all vertex-like UV-divergent subgraphs in G that contains the vertex that is incident to the external photon line of G.

Example Other UV-divergent subgraphs: Gc=aa1a2b1b2c1c2c3c4 Ge=aa1a2b1b2c1c2c3c4d1d2d3e1e2e3 I[G]={Gc,Ge,G} Other UV-divergent subgraphs: electron self-energy – a1a2, vertex-like – c1c2c3, c1c3c4, photon self-energy – c1c2c3c4, photon-photon scattering – Gd=aa1a2b1b2c1c2c3c4d1d2d3

Feynman parameters Assign αj to each line. New propagators photon: electron: Apply the subtraction procedure with new propagators. Integrate (analytically) with respect to λ=α1+…+αn. ε→0. Integrate (numerically) with respect to α1,…,αn≥0, α1+…+αn=1.

Realization 2 loops, 3 loops. Feynman gauge. D programming language – for the generator. C programming language – for the automatically generated code. Adaptive Monte-Carlo (homemade). 3 days of computation on a personal computer:

2-loop case # My value Analyt. value Expression On-shell renorm. (Petermann, 1957) Expression On-shell renorm. Difference 1 0.777455(52) 0.777478 AG-AGUabc-(LG-UG)Aabc AG-AGLabc (LG-UG)Aabc-AG(Labc-Uabc) 2 -0.467626(44) -0.467645 AG 3 -0.032023(29) - AG-AGUbcd AG-AGLbcd AG(Uabc-Labc) 4 -0.032033(29) 5 -0.294978(25) AG-AGUbc AG-AGBbc AG(Ubc-Bbc) 6 -0.294998(24) 7 0.0156895(25) 0.0156874 AG-AGUde

Comparison with known analytical values # My value Analyt. val. Reference 1-6 0.3708(14) 0.3710 [10] 7-10 0.04989(20) 0.05015 [4,5] 11-12,15-16 -0.08782(15) -0.08798 [2,4] 13-14,17-18 -0.11230(17) -0.11234 [3,4] 19-21 0.05288(13) 0.05287 [1] 22 0.002548(20) 0.002559 23-24 1.8629(14) 1.8619 [11] 25 -0.02688(47) -0.02680 [12] 26-27 -3.1764(22) -3.1767 [8] 28 1.7888(19) 1.7903 29-30 -1.7579(10) -1.7579 31-32,37-38 5.3559(27) 5.3576 [8,9] 33-34,37-38 0.4549(14) 0.4555 [8,11] 31-32,35-36 1.5436(34) 1.5416 [7,9] 33-36 -3.3573(24) -3.3605 [7,11] 39-40 -0.33468(95) -0.33470 41-48 -0.4030(41) -0.4029 [6,7] 49-72 0.9529(53) 0.9541 [6-9,11,12] 3-loop Feynman diagrams for electron’s AMM. Plot courtesy of F.Jegerlehner [1] J. Mignaco, E. Remiddi, IL Nuovo Cimento, V. LX A, N. 4, 519 (1969). [2] R. Barbieri, M. Caffo, E. Remiddi, Lettere al Nuovo Cimento, V. 5, N. 11, 769 (1972). [3] D. Billi, M. Caffo, E. Remiddi, Lettere al Nuovo Cimento, V. 4, N. 14, 657 (1972). [4] R. Barbieri, E. Remiddi, Physics Letters, V. 49B, N. 5, 468 (1974). [5] R. Barbieri, M. Caffo, E. Remiddi, Ref.TH.1802-CERN (1974). [6] M. Levine, R. Roskies, Phys. Rev. D, V. 9, N. 2, 421 (1974). [7] M. Levine, R. Perisho, R. Roskies, Phys. Rev. D, V. 13, N. 4, 997 (1976). [8] R. Barbieri, M. Caffo, E. Remiddi et al., Nuclear Physics B 144, 329 (1978). [9] M. Levine, E. Remiddi, R. Roskies, Phys. Rev. D, V. 20, N. 8, 2068 (1979). [10] S. Laporta, E. Remiddi, Physics Letters B 265, 182 (1991). [11] S. Laporta, Physics Letters B 343, 421 (1995). [12] S. Laporta, E. Remiddi, Physics Letters B 379, 283 (1996).

Thank you for your attention! volkoff_sergey@mail.ru http://arxiv.org/abs/1507.06435