Advance Computer Networks Lecture#11 Instructor: Engr. Muhammad Mateen Yaqoob.

Slides:



Advertisements
Similar presentations
CPSC Network Layer4-1 IP addresses: how to get one? Q: How does a host get IP address? r hard-coded by system admin in a file m Windows: control-panel->network->configuration-
Advertisements

CS 457 – Lecture 16 Global Internet - BGP Spring 2012.
8-1 Last time □ Network layer ♦ Introduction forwarding vs. routing ♦ Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding.
Introduction 1-1 1DT066 Distributed Information System Chapter 4 Network Layer.
Week 5: Internet Protocol Continue to discuss Ethernet and ARP –MTU –Ethernet and ARP packet format IP: Internet Protocol –Datagram format –IPv4 addressing.
Introduction 1-1 1DT014/1TT821 Computer Networks I Chapter 4 Network Layer.
Network Layer 4-1 Chapter 4: network layer chapter goals:  understand principles behind network layer services:  network layer service models  forwarding.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Chapter 5 The Network Layer.
4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side, delivers.
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 14.
10 - Network Layer. Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving.
Network Layer Overview and IP
11- IP Network Layer4-1. Network Layer4-2 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Data Communication and Networks Lecture 6 Networks: Part 1 Circuit Switching, Packet Switching, The Network Layer October 13, 2005.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
Network Layer session 1 TELE3118: Network Technologies Week 4: Network Layer Basics, Addressing Some slides have been taken from: r Computer Networking:
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Network Layer4-1 Network layer r transport segment from sending to receiving host r on sending side encapsulates segments into datagrams r on rcving side,
Chapter 4 Network Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 15.
Chapter 4 Queuing, Datagrams, and Addressing
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Adapted from: Computer Networking, Kurose/Ross 1DT066 Distributed Information Systems Chapter 4 Network Layer.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
12 – IP, NAT, ICMP, IPv6 Network Layer.
Network Layer4-1 DHCP: Dynamic Host Configuration Protocol Goal: allow host to dynamically obtain its IP address from network server when it joins network.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 18 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
1DT066 Distributed Information System Chapter 4 Network Layer.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
CIS 3360: Internet: Network Layer Introduction Cliff Zou Spring 2012.
1 Chapter 4: Network Layer r 4.4 IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP m IPv6 r 4.5 Routing algorithms m Hierarchical routing.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
7-1 Last time □ Wireless link-layer ♦ Introduction Wireless hosts, base stations, wireless links ♦ Characteristics of wireless links Signal strength, interference,
1 CSE3213 Computer Network I Network Layer (7.1, 7.3, ) Course page: Slides modified from Alberto Leon-Garcia.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Network Layer introduction.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Internet Protocol ECS 152B Ref: slides by J. Kurose and K. Ross.
1 Network Layer Lecture 15 Imran Ahmed University of Management & Technology.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 The Internet Network layer forwarding table Host, router network layer functions: Routing protocols path selection RIP, OSPF, BGP IP protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Datagram networks r no call setup at network layer r routers: no state about end-to-end connections m no network-level concept of “connection”
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r Understand principles behind network layer services: m Routing (path selection) m dealing with.
The Internet Network layer
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 19 Omar Meqdadi Department of Computer Science and Software Engineering University.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m routing (path selection) m dealing with.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 Chapter 4 Network Layer All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down.
Network Layer4-1 Chapter 4: Network Layer Chapter goals: r understand principles behind network layer services: m network layer service models m forwarding.
CSE 421 Computer Networks. Network Layer 4-2 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside.
Graciela Perera Department of Computer Science and Information Systems Slide 1 of 18 INTRODUCTION NETWORKING CONCEPTS AND ADMINISTRATION CSIS 3723 Graciela.
Introduction to Networks
12 – IP, NAT, ICMP, IPv6 Network Layer.
Data Communication and Networks
Chapter 4: Network Layer
Chapter 4 Network Layer All material copyright
Chapter 4: Network Layer
CS 1652 Jack Lange University of Pittsburgh
Wide Area Networks and Internet CT1403
Network Layer I have learned from life no matter how far you go
DHCP and NAT.
Chapter 4 Network Layer Computer Networking: A Top Down Approach 5th edition. Jim Kurose, Keith Ross Addison-Wesley, April Network Layer.
DHCP: Dynamic Host Configuration Protocol
Presentation transcript:

Advance Computer Networks Lecture#11 Instructor: Engr. Muhammad Mateen Yaqoob

Mateen Yaqoob Department of Computer Science Network layer  transport segment from sending to receiving host  on sending side encapsulates segments into datagrams  on receiving side, delivers segments to transport layer  network layer protocols in every host, router  router examines header fields in all IP datagrams passing through it application transport network data link physical application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical

Mateen Yaqoob Department of Computer Science Two key network-layer functions  forwarding: move packets from router’s input to appropriate router output  routing: determine route taken by packets from source to dest.  routing algorithms analogy:  routing: process of planning trip from source to dest  forwarding: process of getting through single interchange

Mateen Yaqoob Department of Computer Science value in arriving packet’s header routing algorithm local forwarding table header value output link Interplay between routing and forwarding routing algorithm determines end-end-path through network forwarding table determines local forwarding at this router

Mateen Yaqoob Department of Computer Science Virtual circuits  call setup, teardown for each call before data can flow  each packet carries VC identifier (not destination host address)  every router on source-dest path maintains “state” for each passing connection  link, router resources (bandwidth, buffers) may be allocated to VC (dedicated resources = predictable service) “source-to-dest path behaves much like telephone circuit”  performance-wise  network actions along source-to-dest path

Mateen Yaqoob Department of Computer Science Datagram networks  no call setup at network layer  routers: no state about end-to-end connections  no network-level concept of “connection”  packets forwarded using destination host address 1. send datagrams application transport network data link physical application transport network data link physical 2. receive datagrams

Mateen Yaqoob Department of Computer Science Datagram or VC network: why? Internet (datagram)  data exchange among computers  “elastic” service, no strict timing req.  many link types  different characteristics  uniform service difficult  “smart” end systems (computers)  can adapt, perform control, error recovery  simple inside network, complexity at “edge” ATM (VC)  evolved from telephony  human conversation:  strict timing, reliability requirements  need for guaranteed service  “dumb” end systems  telephones  complexity inside network

Mateen Yaqoob Department of Computer Science Router architecture overview two key router functions:  run routing algorithms/protocol (RIP, OSPF, BGP)  forwarding datagrams from incoming to outgoing link high-seed switching fabric routing processor router input ports router output ports forwarding data plane (hardware) routing, management control plane (software) forwarding tables computed, pushed to input ports

Mateen Yaqoob Department of Computer Science line termination link layer protocol (receive) lookup, forwarding queueing Input port functions decentralized switching:  given datagram dest., lookup output port using forwarding table in input port memory (“match plus action”)  goal: complete input port processing at ‘line speed’  queuing: if datagrams arrive faster than forwarding rate into switch fabric physical layer: bit-level reception data link layer: e.g., Ethernet see chapter 5 switch fabric

Mateen Yaqoob Department of Computer Science The Internet network layer forwarding table host, router network layer functions: routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling conventions ICMP protocol error reporting router “signaling” transport layer: TCP, UDP link layer physical layer network layer

Mateen Yaqoob Department of Computer Science ver length 32 bits data (variable length, typically a TCP or UDP segment) 16-bit identifier header checksum time to live 32 bit source IP address head. len type of service flgs fragment offset upper layer 32 bit destination IP address options (if any) IP datagram format IP protocol version number header length (bytes) upper layer protocol to deliver payload to total datagram length (bytes) “type” of data for fragmentation/ reassembly max number remaining hops (decremented at each router) e.g. timestamp, record route taken, specify list of routers to visit. how much overhead?  20 bytes of TCP  20 bytes of IP  = 40 bytes + app layer overhead

Mateen Yaqoob Department of Computer Science IP addressing: introduction  IP address: 32-bit identifier for host, router interface  interface: connection between host/router and physical link  router’s typically have multiple interfaces  host typically has one or two interfaces (e.g., wired Ethernet, wireless )  IP addresses associated with each interface =

Mateen Yaqoob Department of Computer Science Subnets  IP address:  subnet part - high order bits  host part - low order bits  what’s a subnet ?  device interfaces with same subnet part of IP address  can physically reach each other without intervening router network consisting of 3 subnets subnet

Mateen Yaqoob Department of Computer Science recipe  to determine the subnets, detach each interface from its host or router, creating islands of isolated networks  each isolated network is called a subnet subnet mask: /24 Subnets / / / subnet

Mateen Yaqoob Department of Computer Science IP addresses: how to get one? Q: How does a host get IP address?  hard-coded by system admin in a file  Windows: control-panel->network->configuration- >tcp/ip->properties  UNIX: /etc/rc.config  DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server  “plug-and-play ”

Mateen Yaqoob Department of Computer Science DHCP: Dynamic Host Configuration Protocol goal: allow host to dynamically obtain its IP address from network server when it joins network  can renew its lease on address in use  allows reuse of addresses (only hold address while connected/“on”)  support for mobile users who want to join network (more shortly) DHCP overview:  host broadcasts “DHCP discover” msg [optional]  DHCP server responds with “DHCP offer” msg [optional]  host requests IP address: “DHCP request” msg  DHCP server sends address: “DHCP ack” msg

Mateen Yaqoob Department of Computer Science DHCP server: arriving client DHCP discover src : , 68 dest.: ,67 yiaddr: transaction ID: 654 DHCP offer src: , 67 dest: , 68 yiaddrr: transaction ID: 654 lifetime: 3600 secs DHCP request src: , 68 dest:: , 67 yiaddrr: transaction ID: 655 lifetime: 3600 secs DHCP ACK src: , 67 dest: , 68 yiaddrr: transaction ID: 655 lifetime: 3600 secs DHCP client-server scenario Broadcast: is there a DHCP server out there? Broadcast: I’m a DHCP server! Here’s an IP address you can use Broadcast: OK. I’ll take that IP address! Broadcast: OK. You’ve got that IP address!

Mateen Yaqoob Department of Computer Science IP addressing: the last word... Q: how does an ISP get block of addresses? A: ICANN: Internet Corporation for Assigned Names and Numbers  allocates addresses  manages DNS  assigns domain names, resolves disputes

Mateen Yaqoob Department of Computer Science NAT: network address translation local network (e.g., home network) /24 rest of Internet datagrams with source or destination in this network have /24 address for source, destination (as usual) all datagrams leaving local network have same single source NAT IP address: ,different source port numbers

Mateen Yaqoob Department of Computer Science motivation: local network uses just one IP address as far as outside world is concerned:  range of addresses not needed from ISP: just one IP address for all devices  can change addresses of devices in local network without notifying outside world  can change ISP without changing addresses of devices in local network  devices inside local net not explicitly addressable, visible by outside world (a security plus) NAT: network address translation

Mateen Yaqoob Department of Computer Science implementation: NAT router must:  outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)... remote clients/servers will respond using (NAT IP address, new port #) as destination addr  remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair  incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table NAT: network address translation

Mateen Yaqoob Department of Computer Science IPv6: motivation  initial motivation: 32-bit address space soon to be completely allocated.  additional motivation:  header format helps speed processing/forwarding  header changes to facilitate QoS IPv6 datagram format:  fixed-length 40 byte header  no fragmentation allowed

Mateen Yaqoob Department of Computer Science IPv6 datagram format priority: identify priority among datagrams in flow flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). next header: identify upper layer protocol for data data destination address (128 bits) source address (128 bits) payload len next hdr hop limit flow label pri ver 32 bits

Mateen Yaqoob Department of Computer Science Other changes from IPv4  checksum: removed entirely to reduce processing time at each hop  options: allowed, but outside of header, indicated by “Next Header” field  ICMPv6: new version of ICMP  additional message types, e.g. “Packet Too Big”  multicast group management functions

Mateen Yaqoob Department of Computer Science Transition from IPv4 to IPv6  not all routers can be upgraded simultaneously  no “flag days”  how will network operate with mixed IPv4 and IPv6 routers?  tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers IPv4 source, dest addr IPv4 header fields IPv4 datagram IPv6 datagram IPv4 payload UDP/TCP payload IPv6 source dest addr IPv6 header fields

Mateen Yaqoob Department of Computer Science Tunneling physical view: IPv4 A B IPv6 E F C D logical view: IPv4 tunnel connecting IPv6 routers E IPv6 F A B

Mateen Yaqoob Department of Computer Science flow: X src: A dest: F data A-to-B: IPv6 Flow: X Src: A Dest: F data src:B dest: E B-to-C: IPv6 inside IPv4 E-to-F: IPv6 flow: X src: A dest: F data B-to-C: IPv6 inside IPv4 Flow: X Src: A Dest: F data src:B dest: E physical view: A B IPv6 E F C D logical view: IPv4 tunnel connecting IPv6 routers E IPv6 F A B Tunneling IPv4

Mateen Yaqoob Department of Computer Science IPv6: adoption  US National Institutes of Standards estimate [2013]:  ~3% of industry IP routers  ~11% of US gov’t routers  Long (long!) time for deployment, use  20 years and counting!  think of application-level changes in last 20 years: WWW, Facebook, …  Why?