Applications of Ampere’s Law

Slides:



Advertisements
Similar presentations
Magnetic Force Acting on a Current-Carrying Conductor
Advertisements

Sources of the Magnetic Field
Physics 1304: Lecture 12, Pg 1 The Laws of Biot-Savart & Ampere  dl I.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Currents and Magnetism Textbook Sections 22-4 – 22-7 Physics 1161: Lecture 11.
Chapter 30 Sources of the magnetic field
Chapter 32 Magnetic Fields.
Unit 4 Day 8 – Ampere’s Law & Magnetic Fields thru Solenoids & Toroids Definition of Current Ampere’s Law Magnetic Field Inside & Outside a Current Carrying.
Physics 121 Practice Problem Solutions 10 Magnetic Fields from Currents (Biot-Savart and Ampere’s Law) Contents: 121P10 - 1P, 5P, 8P, 10P, 19P, 29P,
Sources of Magnetic Field Chapter 28 Study the magnetic field generated by a moving charge Consider magnetic field of a current-carrying conductor Examine.
Dale E. Gary Wenda Cao NJIT Physics Department
Ampere’s Law.
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Sources of Magnetic Field
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
Chapter 29 Magnetic Fields due to Currents Key contents Biot-Savart law Ampere’s law The magnetic dipole field.
Lecture 9 Magnetic Fields due to Currents Chp. 30 Cartoon - Shows magnetic field around a long current carrying wire and a loop of wire Opening Demo -
Ampere’s Law AP Physics C Mrs. Coyle Andre Ampere.
The Magnetic Field of a Solenoid AP Physics C Montwood High School R. Casao.
AP Physics C Montwood High School R. Casao
Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings.
Sources of the Magnetic Field
Chapter 20 The Production and Properties of Magnetic Fields.
1 Chapter 29: Magnetic Fields due to Currents Introduction What are we going to talk about in chapter 30: How do we calculate magnetic fields for any distribution.
For the wire carrying a flow of electrons in the direction shown, is the magnetic field at point P - P (a)to the right (b)to the left (c)up (d)into the.
Wed. Feb. 18 – Physics Lecture #30 Magnetic Fields 1. Magnetic Fields 2. Magnetic Moments & Torque 3. Ampere’s Law Warm-Up, Discuss with Neighbors: Wire.
Magnetic Fields due to Currents Chapter 29 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Physics 202, Lecture 13 Today’s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between.
30.5 Magnetic flux  30. Fig 30-CO, p.927
Review Problem Review Problem Review Problem 3 5.
Fundamental Physics II PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau, 2013 Pham Hong Quang
CHECKPOINT: What is the current direction in this loop
Copyright © 2009 Pearson Education, Inc. Ampère’s Law.
Magnetic Fields due to Currentss
Magnetic Fields Due to Currents
March 7 Physics 54 Lecture Professor Henry Greenside.
Electromagnetism Lecture#16-17 Instructor: Muhammad Mateen Yaqoob.

Two questions: (1) How to find the force, F on the electric charge, Q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Lecture 28: Currents and Magnetic Field: I
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Biot-Savart Law Biot-Savart law: The constant  o is called the permeability of free space  o = 4  x T. m / A.
Magnetic Fields due to Currents Chapter 29 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Calculating the Magnetic Field Due to a Current
Quiz 1 Borderline Trouble Deep Trouble.
Magnetic Fields due to Currents Chapter 29. The magnitude of the field dB produced at point P at distance r by a current-length element ds turns out to.
Last Time Magnetic Force Motors and Generators Gauss' Law 1.
1© Manhattan Press (H.K.) Ltd magnetic fields due to currents Long straight wire Circular coil Long solenoid.
Chapter 29. Magnetic Field Due to Currents What is Physics? Calculating the Magnetic Field Due to a Current Force Between Two Parallel.
Chapter 28 Sources of Magnetic Field Ampère’s Law Example 28-6: Field inside and outside a wire. A long straight cylindrical wire conductor of radius.
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Magnetic Force Acting on a Current-Carrying Conductor
Ampère’s Law Figure Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl.
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Chapter 3 Magnetostatics
Magnetic Fields due to Currents
Magnetic Fields due to Currents
Ampère’s Law Figure Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl.
Lecture 9 Magnetic Fields due to Currents Ch. 30
Magnetic Fields due to Currents
CHECKPOINT: What is the current direction in this loop
*Your text calls this a “toroidal solenoid.”
Two questions: (1) How to find the force, F on the electric charge, q excreted by the field E and/or B? (2) How fields E and/or B can be created?
Applications of Ampere’s Law
Electricity, Magnetism and Optics FA18-BCS-C Dr. Shahzada Qamar Hussain.
Chapter 29 Magnetic Fields due to Currents Key contents Biot-Savart law Ampere’s law The magnetic dipole field.
Magnetic Fields due to Currentss
Magnetic Field Due To A Current Loop.
Chapter 30 Examples 4,8.
Presentation transcript:

Applications of Ampere’s Law Ex 26.8 Field outside and inside a long straight current- carrying wire Ex 26.9 Field outside a current sheet Ex 26.10 Field of a solenoid Fig 26.39 Field of a toroidal solenoid This lecture

EXAMPLE 26.8: A long straight wire of radius R carries a current I that is uniformly distributed over the circular cross section of the wire. Find the magnetic field both (a) outside and (b) inside the wire. I I

Magnetic field of a solenoid We can use Ampere’s Law. Take the loop with sides abcd and integrate along each side. Only side ab contributes. In bc and da, B is perpendicular to dl. In cd B = 0 (approx). Bh = μ0Ienc Bh = μ0 i N B = μ0 i n (n = N/h, number of turns per unit length)

S N Graph of the magnetic field on the axis inside a solenoid versus the position x on the axis. The field is nearly constant except near the ends. Magnetic fields of a solenoid. They are identical to those of a bar magnet of the same shape.

Toroid Read p457 Apply Ampere’s Law to circle of radius r

CHECKPOINT: The figure shows three long, straight, parallel, equally spaced wires with identical currents either into or out of the page. Rank the wires according to the magnitude of the force on each due to the currents in the other two wires. Answer: B, C, A

CHECKPOINT: The figure shows three equal currents i, two parallel, one anti-parallel, and four Amperian loops. Rank the loops according to the magnitude of along each, greatest first. Answer: D, A = C, B