Paul Bristow (ESO Instrumentation) Thanks to: Andrea Modigliani, Joël Vernet & Florian Kerber, Sabine Moehler (ESO) Paolo Goldoni, Frédéric Royer & Régis Haigron (APC-SAp/CEA) Follow the Photons – Edinburgh – October 2011 Paul Bristow (ESO Instrumentation) Thanks to: Andrea Modigliani, Joël Vernet & Florian Kerber, Sabine Moehler (ESO) Paolo Goldoni, Frédéric Royer & Régis Haigron (APC-SAp/CEA) Follow the Photons – Edinburgh – October 2011
Matrix Representation of Optics M E is the matrix representation of the order m transformation performed by an Echelle grating with E at off-blaze angle . This operates on a 4D vector with components (wavelength, x, y, z).
Applications Wavelength calibration Simulations Early DRS development Effects of modifications/upgrades Instrument monitoring/QC Advanced ETC? Wavelength calibration Simulations Early DRS development Effects of modifications/upgrades Instrument monitoring/QC Advanced ETC?
Some background M. Rosa: Predictive calibration strategies: The FOS as a case study (1995) P. Ballester, M. Rosa: Modeling echelle spectrographs (A&AS 126, 563, 1997) P. Ballester, M. Rosa: Instrument Modelling in Observational Astronomy (ADASS XIII, 2004) Bristow, Kerber, Rosa: four papers in HST Calibration Workshop, 2006 UVES, SINFONI, FOS, STIS, CRIRES, X-shooter – Bristow et al (Experimental Astronomy 31, 131, 2011) M. Rosa: Predictive calibration strategies: The FOS as a case study (1995) P. Ballester, M. Rosa: Modeling echelle spectrographs (A&AS 126, 563, 1997) P. Ballester, M. Rosa: Instrument Modelling in Observational Astronomy (ADASS XIII, 2004) Bristow, Kerber, Rosa: four papers in HST Calibration Workshop, 2006 UVES, SINFONI, FOS, STIS, CRIRES, X-shooter – Bristow et al (Experimental Astronomy 31, 131, 2011)
X-Shooter (300nm-2.5m) Commissioned 2009 Vernet et al A & A. in press Model for UVB, VIS & NIR arms Same model kernel Independent configuration files Cross dispersed, medium res’n, single slit Single mode (no moving components) Cassegrain & heavy => Flexure Commissioned 2009 Vernet et al A & A. in press Model for UVB, VIS & NIR arms Same model kernel Independent configuration files Cross dispersed, medium res’n, single slit Single mode (no moving components) Cassegrain & heavy => Flexure
NIR Th-Ar HCL full slit
Solar like stellar point source and sky
X-shooter Flexure Backbone flexure Causes movement of target on spectrograph slits Corrected with Automatic Flexure Compensation exposures Spectrograph flexure Flexing of spectrograph optical bench Can also be measured in AFC exposures First order translation automatically removed by pipeline Backbone flexure Causes movement of target on spectrograph slits Corrected with Automatic Flexure Compensation exposures Spectrograph flexure Flexing of spectrograph optical bench Can also be measured in AFC exposures First order translation automatically removed by pipeline VIS UVB NIR
Lab Measurements NIR arm Multi-pinhole Translational & higher order distortions
AFC Exposures Obtained with every science obs => large dataset ~300 exp from Jan – May 2011 Single pinhole, Pen-ray lamp Window: 1000x1000 win (UVB 12/VIS 14 lines) Entire array (NIR 160 lines) NIR UVB VIS
Physical Model Optimisation FOR EVERY CALIBRATION EXPOSURE
Choosing “open” parameters All parameters open Slow Optimal result Degeneracy Physically motivated: Related to flexure Constrained by data In these results: Prism orientation; Grating Orientation; Grating constant; Camera focal length; Detector position and orientation All parameters open Slow Optimal result Degeneracy Physically motivated: Related to flexure Constrained by data In these results: Prism orientation; Grating Orientation; Grating constant; Camera focal length; Detector position and orientation
NIR
(Product moment correlation)
VIS
UVB
Summary Simple physical modelling approach: wavelength calibration for a number of instruments Raw data simulation Instrument monitoring Application to X-shooter Flexure monitoring Allows identification of physical model parameters that correlate with instrument orientation Simple physical modelling approach: wavelength calibration for a number of instruments Raw data simulation Instrument monitoring Application to X-shooter Flexure monitoring Allows identification of physical model parameters that correlate with instrument orientation
Physical Model Optimisation QC Data 9 pinhole mask, arc lamp: Th-Ar (UVB 250 lines x 9 & VIS 390 lines x 9) pen-ray (NIR 140 lines x 9) Daytime, Zenith (no flexure except hysteresis) 1/week => small data set Automatically processed by pipeline (ESO QC) QC Data 9 pinhole mask, arc lamp: Th-Ar (UVB 250 lines x 9 & VIS 390 lines x 9) pen-ray (NIR 140 lines x 9) Daytime, Zenith (no flexure except hysteresis) 1/week => small data set Automatically processed by pipeline (ESO QC)
Effective camera focal length (mm) UVB Camera temperature sensor reading (°C)VIS Camera temperature sensor reading (°C)
Detector tip (°) Detector tilt (°) Effective camera focal length (mm) Modified Julian Date (days)
Explain “our Physical Models” Compare to poly Uses Calibration Simulation Test DRS Investigate modifications/upgrades Monitor/understand instrument behaviour History (Ballester & Rosa) Introduce X-shooter Overview Flexure Lab plots AFC Calibration exposures Flexure Procedure Optimisation for 1 exposure Apply to all data Choosing open parameters Flexure Results NIR Residuals Sin plot Linear plots Table – highlight interesting param combinations UVB Residuals Linear plots table VIS Residuals Linear plots table Flexure conclusions QC Procedure Results Summary Explain “our Physical Models” Compare to poly Uses Calibration Simulation Test DRS Investigate modifications/upgrades Monitor/understand instrument behaviour History (Ballester & Rosa) Introduce X-shooter Overview Flexure Lab plots AFC Calibration exposures Flexure Procedure Optimisation for 1 exposure Apply to all data Choosing open parameters Flexure Results NIR Residuals Sin plot Linear plots Table – highlight interesting param combinations UVB Residuals Linear plots table VIS Residuals Linear plots table Flexure conclusions QC Procedure Results Summary