Granada:16 - 18/04/ 08Spectroscopy at Dome C1 SIAMOIS : asteroseismic observations after CoRoT: the need for spectroscopic measurements Benoit Mosser -

Slides:



Advertisements
Similar presentations
PLAnetary Transits and Oscillations of stars H. Rauer 1, C. Catala 2, D. Pollacco 3, S. Udry 4 and the PLATO Team 1: Institut für Planetenforschung, DLR.
Advertisements

MAROON-X: An instrument for identifying another Earth
1 A B Models and frequencies for frequencies for α Cen α Cen & Josefina Montalbán & Andrea Miglio Institut d’Astrophysique et de Géophysique de Liège Belgian.
Stellar analysis system (SAS*) WP370 T. Appourchaux Institut d’Astrophysique Spatiale, Orsay *SAS= Special Air Service or Son Altesse Sérénissime.
Detection and Photometric Monitoring of QSOs and AGN with COROT J. Surdej, J.Poels, J.-F. Claeskens, E. Gosset Institut d’Astrophysique et de Géophysique,
1 SIAMOIS Sismomètre Interférentiel A Mesurer les Oscillations des Intérieurs Stellaires Asteroseismology in Antarctica at Dome C Benoît Mosser, Michel.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
A ground-based velocity campaign on Procyon Tim Bedding (Univ. Sydney) and about 50 others.
SEARCHING FOR PLANETS IN THE HABITABLE ZONE. FROM COROT TO PLATO Ennio Poretti – INAF OAB.
Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
June 15, 2006ARENA workshop1 SIAMOIS Sismomètre Interférentiel A Mesurer les Oscillations des Intérieurs Stellaires Seismic Interferometer to Measure Oscillations.
Science Opportunities for HARPS-NEF David W. Latham PDR - 6 December 2007.
Thanks to Henrietta Swan Leavitt, Harvard CfA November 5th Hommage to Henrietta Leavitt from the CoRoT Team Annie BAGLIN, Merième CHADID,
Exoplanet Transits and SONG Angelle Tanner. Venus Transiting the Sun.
Asteroseismology: Looking inside stars Jørgen Christensen-Dalsgaard & Hans Kjeldsen Aarhus Universitet Rømer.
Exoplanet Transits with mini-SONG Licai NAOC Presented for the NJU group.
SDW20051 Vincent Lapeyrère LESIA – Observatoire de Paris Calibration of flight model CCDs for CoRoT mission.
Inversion of rotation profile for solar-like stars Jérémie Lochard IAS 19/11/04.
Catania 09/08SIAMOIS1/26 Benoît Mosser, for the SIAMOIS team Ground-based Doppler asteroseismology after CoRoT and Kepler.
PLAnetary Transits and Oscillations of stars Thierry Appourchaux for the PLATO Consortium
Pulsations and magnetic activity in the IR Rafa Garrido & Pedro J. Amado Instituto de Astrofísica de Andalucía, CSIC. Granada.
26-29 March, 2007Arena Workshop, Tenerife1 SIAMOIS Sismomètre Interférentiel A Mesurer les Oscillations des Intérieurs Stellaires Seismic Interferometer.
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
1 CoRoT Highlights Annie Baglin and Eric Michel Observatoire de Paris and all the CoRoT Team and all the CoRoT Team * The Mission * Seismology * Stellar.
Katrien Uytterhoeven The Kepler space mission: New prospects for δ Sct, γ Dor, and hybrid stars Instituto de Astrofísica de Canarias, Tenerife NMSU, January.
COROT TARGETS: PROGRESS REPORT ON THE PHOTOMETRIC AND SPECTROSCOPIC MONITORING OF DSCT, GDOR AND BCEP VARIABLE STARS.
September 17, 20072nd ARENA Conference Postdam1 Asteroseismology, from space and from the ground Benoît Mosser Observatoire de Paris/LESIA.
August 2006SOHO 18/GONG 2006/HELAS I Asteroseismology in Antarctica SIAMOIS : Seismic Interferometer Aiming to Measure Oscillations in the Interiors of.
Future of asteroseismology II Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk Center.
The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity.
11/12/03 5th COROT Week Detection and Photometric Monitoring of QSOs and AGN with COROT J. Surdej, J.-F. Claeskens, E. Gosset, J. Poels, P. Riaud, A. Smette,
Scientific aspects of SONG Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Asteroseismological determination of stellar rotation axes: Feasibility study (COROT AP+CP) L. Gizon(1), G. Vauclair(2), S. Solanki(1), S. Dreizler(3)
Stellar Parameters through Analysis of the Kepler Oscillation Data Chen Jiang & Biwei Jiang Department of Astronomy Beijing Normal University 2 April 2010.
A Search for Earth-size Planets Borucki – Page 1 Roger Hunter (Ames Research Center) & Kepler Team March 26, 2010.
HD This star is found periodic. The possible period is days. We present the phase curve with this period. HD This star is not variable.
Photometric detection of the starlight reflection by a “Pegasi” planet Martin Vannier (1), Tristan Guillot (2), Suzanne Aigrain (1) (1) ESO, Chile (2)
March 21, 2006SONG workshop1/27 SIAMOIS Sismomètre Interferentiel A Mesurer les Oscillations des Intérieurs Stellaires An asteroseismic network with 1.
First considerations on possible preliminary and complementary programmes for the SIAMOIS project Ennio Poretti INAF – Osservatorio Astronomico di Brera.
The CoRoT ground-based complementary archive The CoRoT ground-based complementary archive Monica Rainer, Ennio Poretti M. Rosa Panzera, Angelo Mistò INAF.
Internal rotation: tools of seismological analysis and prospects for asteroseismology Michael Thompson University of Sheffield
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
A STEP Expected Yield of Planets … Survey strategy The CoRoTlux Code Understanding transit survey results Fressin, Guillot, Morello, Pont.
A tool to simulate COROT light-curves R. Samadi 1 & F. Baudin 2 1 : LESIA, Observatory of Paris/Meudon 2 : IAS, Orsay.
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
Kick-off meeting SIAMOIS Paris, mai 2006 PMS targets Seismology of Herbig stars with SIAMOIS Torsten Böhm, Marc-Antoine Dupret Claude Catala, Marie-Jo.
Extrasolar Planets Is there a twin of our Home Planetsomewhere out there? Gero Rupprecht, ESO Brandys,
CW9 - Asteroseismology with HARPS 1 Observations with HARPS Benoît Mosser Obs. Paris, LESIA François Bouchy LAM/OHP/IAP
Radial Velocity Detection of Planets: I. Techniques 1. Keplerian Orbits 2.Spectrographs/Doppler shifts 3. Precise Radial Velocity measurements Contact:
Corot Week 61 Targets selection Be stars Paris-Meudon Observatory: A.-M. Hubert, M. Floquet, C. Neiner Univ. of Valencia: J. Fabregat, J. Gutierrez-Soto,
Travis Metcalfe Space Science Institute + Stellar Astrophysics Centre Probing Stellar Activity with Kepler.
First Attempt of Modelling of the COROT Main Target HD Workshop: "gamma Doradus stars in the COROT fields" /05/ Nice Mehdi – Pierre.
Asteroseismology with A-STEP The sun from the South Pole Grec, Fossat & Pomerantz, 1980, Nature, 288, 541.
1. Short Introduction 1.1 Overview of helioseismology results and prospects.
The Saga of Procyon Pierre Demarque Yale University “Stars in Motion” A Symposium in honor of Bill van Altena September
Tautenburg planet search program Eike Guenther Artie Hatzes Davide Gandolfi Michael Hartmann Massimiliano Esposito (now Hamburger Sternwarte) Felice Cusano.
GIRAFFE (VLT): A new tool for exoplanets preparatory observations and follow-up Benoît Loeillet (LAM), François Bouchy, Magali Deleuil, Claire Moutou,
The Doppler follow-up of COROT transit candidates F. Bouchy Laboratoire d’Astrophysique de Marseille Corot Week 8 – 23/27 May 2005.
AFS Lecture 4. COROT, COnvection, ROtation & Transits exoplanétaires.
The Kepler Mission S. R. Kulkarni.
Recent Results and Future Improvements
Strategy of radial velocity follow-up
Overview of the SONG project
Corot Be stars group Be stars: The team:
Solar-like oscillations with HARPS …and SOPHIE
The SMARTS Southern HK Project
Search and Characterization
Presentation transcript:

Granada: /04/ 08Spectroscopy at Dome C1 SIAMOIS : asteroseismic observations after CoRoT: the need for spectroscopic measurements Benoit Mosser - LESIA (presented by Jean-Pierre Maillard, IAP)

Granada: /04/ 08Spectroscopy at Dome C2 Outline 1.Asteroseismology -Photometric observations with CoRoT -Spectroscopic results from ground (HARPS, …) 2.Performance comparison -Photometric measurements -Doppler measurements 3.Doppler measurements -Grating spectrometer -Fourier tachometer 4. SIAMOIS -Principle -Scientific program -Schedule

Granada: /04/ 08Spectroscopy at Dome C3 Asteroseismology purpose Age determination~ a few % Stellar radii ( impact for exoplanet radii )~ a few % Stellar composition Diagnostic of convective cores Depth of convection and of second helium ionization zones Mode excitation mechanisms (convection) Rotation and internal structure Specification: eigenfrequency resolution d ν = 0.2 μHz  continuous observations (  > 80 %)  long duration ( d ν = 1/T) (T > 2.5 months)

Granada: /04/ 08Spectroscopy at Dome C4 CoRoT launched on December 27 th, 2006 by Soyuz 2, from Baikonour, Kazakhstan low Earth polar orbit, 896 km altitude orbital period 6184 s (~1h43mn, 162  Hz) high precision photometry The CoRoT space mission was developped and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA, Germany and Spain

CoRoT light curves Granada: /04/ 08Spectroscopy at Dome C5 Variability below the level over 20 days of a 6th magnitude F star Typically 10  in 30 s Typical CoRoT light curve  Photon noise limited performance ~ 1 ppm  150 days  Duty cycle ~ 92%

Granada: /04/ 08Spectroscopy at Dome C6 Photometry (1) HD 49933, mV=5.7, F5V, observed during the initial run (60 days) Mode amplitudes ~ 1 few ppm  observation of p-mode oscillations in solar-like stars not achievable by photometric ground-based measurements

Granada: /04/ 08Spectroscopy at Dome C7 Photometry (2) Stellar granulation: important contribution at low frequency  limits the spectrum SNR for f < 2 mHz HD , mV=6.7, F2V, first long run (150 days)

Granada: /04/ 08Spectroscopy at Dome C8 Ground-based observations solar-like oscillations in solar-like stars - ESO 3.6-m - AAT - Euler telescope - OHP + SARG, McD, Okoyama, Lick Oscillation detection ٧ ~ 20 targets Mode identification ٧ for ~ 12 targets 2-sites observation ٧ 5 targets Network observation ٧ 1 target (Procyon) Stellar structure modelling ٧ ~ 2 targets Rotation, fine structure… ٧ insufficient precision Observations limited to a few days

Granada: /04/ 08Spectroscopy at Dome C9 Spectroscopic result (1) Procyon, 10-day network observation (11 observatories, Jan. 2007)  Identification of mixed modes  Definitely a post-MS star Mosser et al 2008, A&A 478, 197 Bedding et al 2008, in preparation Day aliases (11.57 Hz) still present; too short duration compared to stellar rotation period

Granada: /04/ 08Spectroscopy at Dome C10 Spectroscopic result (2) HD ; F6V ; mV = 4.8 Old star of the thick galactic disk 5 days observation with HARPS duty cycle 40% Stellar modelling beforewith asteroseismic constraints L/Lo1.40 ± ± M/Mo 0.88 ± ± R/Ro 1.04 ± ± 0.02 T (K)6070 ± ± 45 Fe/H  0.60 ± 0.10  0.55 ± 0.05 Age (Gyr)10.5 ± ± 0.3 Precision still hampered by poor frequency resolution and duty cycle Mosser et al 2008, submitted to A&A

Granada: /04/ 08Spectroscopy at Dome C11 Principle : photon noise limited performances - Q quality factor of the spectrum - N e number of photoelectrons collected Q depends on: - the spectral type and the v.sini (rotation) of the star - the type of instrument GS: grating spectrometer FS: Fourier Transform spectrometer Doppler asteroseismometry

Granada: /04/ 08Spectroscopy at Dome C12 The quality factor Q gives a measure of the: - number - depth - width of the lines in the stellar spectrum Q # dln A /dln Quality factor Better Q factor for cooler stars Better performances in the blue part of the visible spectrum Supposes a high resolving power (~ ) of the grating spectrometer

Granada: /04/ 08Spectroscopy at Dome C13 Photometry Spectrometry Q = stellar oscillation quality factor Oscillation amplitudes 1 ppm  10 cm/s Comparison: Photometry/Spectrometry TargetQuality factor Photometry hyp: N e,p ~ mV ~ 6 Tachometry with N e,v ~ N e,p / 3 mm Type K low vsini ppm0.36 m/s3 Type F vsini = 12 km/s 5001 ppm1.1 m/s5 Photometric observations: dimmer targets, or smaller telescope 1 ppm sensitivity require space-borne observations

Granada: /04/ 08Spectroscopy at Dome C14 Doppler / photometry on the Sun Solar granulation noise: photometric observations 50 times noisier at low frequency than Doppler measurements

Granada: /04/ 08Spectroscopy at Dome C15 Granulation noise

Granada: /04/ 08Spectroscopy at Dome C16 l=3 modes l=3 modes have higher visibility in spectroscop y Small separation

Granada: /04/ 08Spectroscopy at Dome C17 Doppler / photometry on the Sun Inversion 4 times more precise with Doppler data low frequency noise + l=3 modes  Gabriel et al 1998 Core size determination

Granada: /04/ 08Spectroscopy at Dome C18 Space / Ground spaceground Observationphotometryspectrometry Max. degree2 3 Targets magnitudeDim Bright Spectral typeT > T sun Any v sin i-- < 15 km/s Inversion14 time more precise

Granada: /04/ 08Spectroscopy at Dome C19 Fourier transform Seismometry: The Doppler signal is retrieved from the interferogram of the stellar spectrum Fourier Transform Seismometry

Granada: /04/ 08Spectroscopy at Dome C20 FT seismometry successfully tested with the FTS at CFHT Procyon Mosser et al. 1998, A&A 340, 457 Jupiter Mosser et al. 2000, Icarus 144, 104 Fourier Transform Seismometry FTS at CFHT: repeated scan of one selected fringe of the interferogram shift of the fringe signal with time  Doppler signal

Granada: /04/ 08Spectroscopy at Dome C21 ( Mosser, Maillard, Bouchy 2003, PASP 115, 990) Q increases with - wavenumber   - working path difference  opt - fringe contrast C FS: quality factor A high fringe contrast C requires a narrow bandwidth To be compatible with a high Ne factor requires a dispersion of the fringes (post-disperser) = many adjacent narrow bandwiths with

Granada: /04/ 08Spectroscopy at Dome C22 Fourier transform seismometry with post-dispersion The Doppler signal is searched in the interferogram of each spectral element defined by the post- disperser FS: Q with post-dispersion Q factor as a function of the post-dispersion resolution and the spectral type for 3 vsini

Granada: /04/ 08Spectroscopy at Dome C23 GS / FS FS: post-dispersion resolution R~ 1000 GS > FS if reference = ThAr lamp (Mosser et al. 2003) GS ~ FS if reference = iodine cell δv(GS) / δv(FS) as a function of v sini and T of the star GS: HARPS (ref = ThAr lamp) R ~

Granada: /04/ 08Spectroscopy at Dome C24 GS / FS GSFS Input Fiberdouble scrambler ( /400) 1"~ 6 m/s simple scrambler ( /100) 1" ~ 1 cm/s Quality factor Q GS = Q(Q *, R)Q FS = Q(Q *, R pd ) Resolution R ~ 10 5 Path difference ~1 cm R pd ~1000 Grating ~ 10 x 40 cmTwo ~5x5 cm CCD4k x 2k1k x 256 FS: smaller and simpler instrument than a GS monolithic interferometer = no moving parts (SIAMOIS concept)  possible installation and setup at Dome C

Granada: /04/ 08Spectroscopy at Dome C25 A Fourier Spectrometer dedicated to asteroseismology with no moving parts to be installed at Dome C behind a 40-cm telescope phase A completed P.I. B. Mosser Scientific Committee Th. Appourchaux (France, pdt), C. Catala (inst. scientist), S. Charpinet (France), D. Kurz (UK), Ph. Mathias (France), A. Noels (Belgium), E. Poretti (Italy), SIAMOIS = Système Interférentiel A Mesurer les OscIllations Stellaires

Granada: /04/ 08Spectroscopy at Dome C26 SIAMOIS performances at Dome C Photon noise limited performances SIAMOIS, at Dome C, 40-cm telescope, 120 hours with 95% duty cycle, mV = 4 ‘‘SNR’’ on circumpolar targets

SIAMOIS performances at Dome C Granada: /04/ 08Spectroscopy at Dome C27 SIAMOIS with post-disperser R = 1000 at Dome C for 3 solar-like stars

Granada: /04/ 08Spectroscopy at Dome C28 Targets 1)K, G, F, class IV & V targets 2)Red giants 3)Delta-Scuti, gamma Dor, PMS… Since long-duration observations are required, a 40-cm telescope provides already a scientific program on p-mode oscillation in solar-like targets as large as the CoRoT program

Granada: /04/ 08Spectroscopy at Dome C29 Targets with a 40-cm telescope Observable solar-like stars with p-mode oscillations for a dedicated 40-cm telescope 40-cm telescope: - 7 bright targets, type: F, G, K class: IV & V - many red giants;  Scuti (v sin i < 20 km/s)  Scientific program for more than 6 winterings COROT  Program complementary to CoRoT

Granada: /04/ 08Spectroscopy at Dome C30 Clear sky fraction at Dome C Clear sky fraction > 90% during 84% of the time Average number of consecutive clear days: 6.8 days Clear sky fraction measured by Eric Aristidi (2006 winter)

Granada: /04/ 08Spectroscopy at Dome C31 Duty cycle Better performance at Dome C compared to a 6-site network (Mosser & Aristidi 2007, PASP)

Granada: /04/ 08Spectroscopy at Dome C32 SIAMOIS 40-cm telescope small size, low cost, easy ‘antarctization’, dedicated to the project Phase A completed, April 2007 Interferometer fiber fed Mach Zehnder interferometer, operated at room temperature, monolithic no moving parts, photon noise limited performance Data automatic pipeline reduction, telemetry: limited flow < 100 kb/day

Granada: /04/ 08Spectroscopy at Dome C33 Simulations F6V star, mV = 4.5, vsini = 5 km/s, 90-day long run Modelling: stochastic excitation + intrinsic damping  Lorentzian profiles (Anderson et al 1990) l =

Granada: /04/ 08Spectroscopy at Dome C34 Simulations F6V star, mV = 4.5, vsini = 5 km/s, 90-day long run Precision on the eigenfrequency measurement: 0.10 – 0.25  Hz (Libbrecht 1992) l = Longer lifetimes at low frequency  clear multiplets

Granada: /04/ 08Spectroscopy at Dome C35 Fourier tachometer Another advantage: multi-object advantage  simultaneous observations of several targets First step: small telescope + FT Then: multi-targets observation = small telescopes + 1 FT

Granada: /04/ 08Spectroscopy at Dome C36 Planning & budget < 2006 principle: monolithic Fourier Tachometer 2007 thermo-mechanical analysis phase A PDR FDR integration tests summer campaign: Dome C 2013 First winterover at Dome C Budget ~ 860 k€ << budget for an equivalent 6-site network LESIA (Obs. Paris), IAS (Orsay), LUAN (Nice), OMP (Toulouse) + SESO

Granada: /04/ 08Spectroscopy at Dome C37 Perspectives Asteroseismology requires uninterrupted long-duration time series ! 1 dedicated 40-cm telescope: - first season observation - fiber FOV = 5’’ (>> seeing)  stellar magnitude < 5 for solar-like oscillations < 7 for classical pulsators 2 or 3 dedicated small telescopes - next step  simultaneous observations of 2 or 3 stars 2-m class telescope? -stellar magnitude < 8.5 for solar-like oscillations - increase of the number of reachable targets  possibility to achieve specific observations in selected targets However, a dedicated telescope would be required

Granada: /04/ 08Spectroscopy at Dome C38 Other projects: KEPLER NASA; launch = nov 2008 High precision photometry a few fields reserved for asteroseismology CoRoT  Kepler : tel. 27 cm  95 cm orbitpolar  L2 + duty cycle in L2 - sensitivety (mV > 9), radiations in L2 ?exact scientific case for asteroseismology? October 2007: First KASC workshop, Paris. The Kepler Asteroseismic Science Consortium (KASC) is an international consortium of researchers dedicated to the asteroseismic analysis of Kepler data.

Granada: /04/ 08Spectroscopy at Dome C39 SONG Project currently in phase 0 Danish asteroseismology centre, Aarhus University Network of 6 to 8 small telescopes (60  80 cm) Echelle spectrometer + iodine cell Expected schedule: 1 prototype for >> 2012

Granada: /04/ 08Spectroscopy at Dome C40 Comparison CoRoTKeplerSONGSIAMOIS 2 eyes diam = 12° 10° x 10° (Cygnus-Lyra) |  | < 30°  <  45° Duty cycle 92 %~ CoRoT~ 85 %~ 90 % 5-day perf. 0.6 ppm> 1.2 ppm2-20 cm/s Max obs. 5 months  4 years3 months Magnitude > 6> 9< 7 # targets 28Up to 40 : 4 yr Up to 160 : 1 yr Up to 1000 : 90 d > 30 # solar-like 47 Status In operationLaunch = 11/ 2008 Phase 0 Prototype > 2012 Phase A is OK 2013 at Dome C Instrument cost 65 M€> 6 M€ (6 tel)0.86 M€ (1 tel) 1.02 M€ (2 tel)

Granada: /04/ 08Spectroscopy at Dome C41 Conclusions Space-borne observations = photometric observations CoRot unique results Kepler not primarily specified for asteroseismology sensitivity for p-mode oscillations under question very dim targets  uncertainty on fundamental parameters Ground-based observations = Doppler observations measurement of modes up to degree l = 3 much less low frequency noise  much better inversion and modelling observation of low mass stars Networkvery late schedule, complex organization Dome C= unique site for asteroseismology 3-month continuous observation with duty cycle ~ 90% High performance with a 40-cm collector Better performance than a 6-site network