References Books: Chapter 11, Image Processing, Analysis, and Machine Vision, Sonka et al Chapter 9, Digital Image Processing, Gonzalez & Woods.

Slides:



Advertisements
Similar presentations
Segmentation by Morphological Watersheds
Advertisements

Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
In form and in feature, face and limb, I grew so like my brother
Table of Contents 9.5 Some Basic Morphological Algorithm
Document Image Processing
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Chapter 9: Morphological Image Processing
Some Basic Morphological Algorithm
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
图像处理技术讲座( 7 ) Digital Image Processing (7) 二值形态学 Binary morphology 顾 力栩 上海交通大学 计算机系
Introduction to Morphological Operators
Morphological Image Processing Md. Rokanujjaman Assistant Professor Dept of Computer Science and Engineering Rajshahi University.
Provides mathematical tools for shape analysis in both binary and grayscale images Chapter 13 – Mathematical Morphology Usages: (i)Image pre-processing.
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Chapter 9 Morphological Image Processing Chapter 9 Morphological.
Morphology Structural processing of images Image Processing and Computer Vision: 33 Morphological Transformations Set theoretic methods of extracting.
Chapter 9 Morphological Image Processing. Preview Morphology: denotes a branch of biology that deals with the form and structure of animals and planets.
1 © 2010 Cengage Learning Engineering. All Rights Reserved. 1 Introduction to Digital Image Processing with MATLAB ® Asia Edition McAndrew ‧ Wang ‧ Tseng.
Morphological Image Processing
2007Theo Schouten1 Morphology Set theory is the mathematical basis for morphology. Sets in Euclidic space E 2 (or rather Z 2 : the set of pairs of integers)
E.G.M. PetrakisBinary Image Processing1 Binary Image Analysis Segmentation produces homogenous regions –each region has uniform gray-level –each region.
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Lecture 5. Morphological Image Processing. 10/6/20152 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of animals.
Morphological Image Processing
MATHEMATICAL MORPHOLOGY I.INTRODUCTION II.BINARY MORPHOLOGY III.GREY-LEVEL MORPHOLOGY.
Mathematical Morphology Lecture 14 Course book reading: GW Lucia Ballerini Digital Image Processing.
Chapter 9.  Mathematical morphology: ◦ A useful tool for extracting image components in the representation of region shape.  Boundaries, skeletons,
Mathematical Morphology Set-theoretic representation for binary shapes
Digital Image Fundamentals II 1.Image modeling and representations 2.Pixels and Pixel relations 3.Arithmetic operations of images 4.Image geometry operation.
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
September 23, 2014Computer Vision Lecture 5: Binary Image Processing 1 Binary Images Binary images are grayscale images with only two possible levels of.
Digital Image Processing Chapter 9: Morphological Image Processing 5 September 2007 Digital Image Processing Chapter 9: Morphological Image Processing.
Morphological Processing
Morphological Image Processing
Gianni Ramponi University of Trieste Images © 2002 Gonzalez & Woods Digital Image Processing Chapter 9 Morphological Image.
Chapter 3 cont’d. Binary Image Analysis. Binary image morphology (nonlinear image processing)
Digital Image Processing CSC331 Morphological image processing 1.
Digital Image Processing CSC331 Morphological image processing 1.
Morphological Image Processing การทำงานกับรูปภาพด้วยวิธีมอร์โฟโลจิคัล
CS654: Digital Image Analysis
Mathematical Morphology
图像处理技术讲座(11) Digital Image Processing (11) 灰度的数学形态学(3) Mathematical morphology in gray scale (3) 顾 力栩 上海交通大学 计算机系
CS654: Digital Image Analysis
Digital Camera and Computer Vision Laboratory Department of Computer Science and Information Engineering National Taiwan University, Taipei, Taiwan, R.O.C.
EE 4780 Morphological Image Processing. Bahadir K. Gunturk2 Example Two semiconductor wafer images are given. You are supposed to determine the defects.
Image Processing and Analysis (ImagePandA)
1 Mathematic Morphology used to extract image components that are useful in the representation and description of region shape, such as boundaries extraction.
Morphological Image Processing Robotics. 2/22/2016Introduction to Machine Vision Remember from Lecture 12: GRAY LEVEL THRESHOLDING Objects Set threshold.
 Mathematical morphology is a tool for extracting image components that are useful in the representation and description of region shape, such as boundaries,
BYST Morp-1 DIP - WS2002: Morphology Digital Image Processing Morphological Image Processing Bundit Thipakorn, Ph.D. Computer Engineering Department.
Morphology Morphology deals with form and structure Mathematical morphology is a tool for extracting image components useful in: –representation and description.
Machine Vision ENT 273 Hema C.R. Binary Image Processing Lecture 3.
Lecture(s) 3-4. Morphological Image Processing. 3/13/20162 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of.
Chapter 6 Skeleton & Morphological Operation. Image Processing for Pattern Recognition Feature Extraction Acquisition Preprocessing Classification Post.
Digital Image Processing, Spring ECES 682 Digital Image Processing Week 8 Oleh Tretiak ECE Department Drexel University.
Morphological Image Processing (Chapter 9) CSC 446 Lecturer: Nada ALZaben.
Morphological Image Processing
Lecture 11+x+1 Chapter 9 Morphological Image Processing.
Digital Image Processing Lecture 15: Morphological Algorithms April 27, 2005 Prof. Charlene Tsai.
Mathematical Morphology
Digital Image Processing CP-7008 Lecture # 09 Morphological Image Processing Fall 2011.
CSE 554 Lecture 1: Binary Pictures
HIT and MISS.
Morphological Operations
CS Digital Image Processing Lecture 5
Binary Image processing بهمن 92
Morphological Image Processing
Digital Image Processing Lecture 15: Morphological Algorithms
Digital Image Processing Lecture 14: Morphology
CS654: Digital Image Analysis
Presentation transcript:

References Books: Chapter 11, Image Processing, Analysis, and Machine Vision, Sonka et al Chapter 9, Digital Image Processing, Gonzalez & Woods

Topics Basic Morphological concepts Four Morphological principles Binary Morphological operations Dilation & erosion Hit-or-miss transformation Opening & closing Gray scale morphological operations Some basic morphological operations Boundary extraction Region filling Extraction of connected component Convex hull Skeletonization Granularity Morphological segmentation and watersheds

Introduction Morphological operators often take a binary image and a structuring element as input and combine them using a set operator (intersection, union, inclusion, complement). The structuring element is shifted over the image and at each pixel of the image its elements are compared with the set of the underlying pixels. If the two sets of elements match the condition defined by the set operator (e.g. if set of pixels in the structuring element is a subset of the underlying image pixels), the pixel underneath the origin of the structuring element is set to a pre-defined value (0 or 1 for binary images). A morphological operator is therefore defined by its structuring element and the applied set operator. Image pre-processing (noise filtering, shape simplification) Enhancing object structures (skeletonization, thinning, convex hull, object marking) Segmentation of the object from background Quantitative descriptors of objects (area, perimeter, projection, Euler-Poincaré characteristics)

Example: Morphological Operation Let ‘’ denote a morphological operator

Example: Morphological Operation Let ‘’ denote a morphological operator

Principles of Mathematical Morphology Compatibility with translation Translation-dependent operators Translation-independent operators Compatibility with scale change Scale-dependent operators Scale-independent operators Local knowledge: For any bounded point set Z´ in the transformation Ψ(X), there exits a bounded set Z, knowledge of which is sufficient to predict Ψ(X) over Z´. Upper semi-continuity: Changes incurred by a morphological operation are incremental in nature, i.e., its effect has an upper bound.

Dilation Morphological dilation ‘’ combines two sets using vector of set elements

Erosion Morphological erosion ‘Θ’ combines two sets using vector subtraction of set elements and is a dual operator of dilation

Duality: Dilation and Erosion Transpose Ă of a structuring element A is defined as follows Duality between morphological dilation and erosion operators

Hit-Or-Miss transformation Hit-or-miss is a morphological operators for finding local patterns of pixels. Unlike dilation and erosion, this operation is defined using a composite structuring element B=(B1,B2). The hit-or-miss operator is defined as follows

Hit-Or-Miss transformation

Hit-Or-Miss transformation

Hit-Or-Miss transformation

Opening Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation

Opening Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation

Opening Erosion and dilation are not inverse transforms. An erosion followed by a dilation leads to an interesting morphological operation

Closing Closing is a dilation followed by an erosion followed

Closing Closing is a dilation followed by an erosion followed

Closing Closing is a dilation followed by an erosion followed

Closing Closing is a dilation followed by an erosion followed

Gray Scale Morphological Operation Basic Morphological concepts Four Morphological principles Binary Morphological operations Dilation & erosion Hit-or-miss transformation Opening & closing Gray scale morphological operations Some basic morphological operations Boundary extraction Region filling Extraction of connected component Convex hull Skeletonization

Gray Scale Morphological Operation top surface T[A] Set A Support F

Gray Scale Morphological Operation A: a subset of n-dimensional Euclidean space, A  Rn F: support of A Top hat or surface A top surface is essentially a gray scale image f : F  R An umbra U(f) of a gray scale image f : F  R is the whole subspace below the top surface representing the gray scale image f. Thus,

Gray Scale Morphological Operation umbra Support F top surface T[A]

Gray Scale Morphological Operation top surface T[A]

Gray Scale Morphological Operation The gray scale dilation between two functions may be defined as the top surface of the dilation of their umbras More computation-friendly definitions Commonly, we consider the structure element k as a binary set. Then the definitions of gray-scale morphological operations simplifies to

Morphological Boundary Extraction The boundary of an object A denoted by δ(A) can be obtained by first eroding the object and then subtracting the eroded image from the original image.

Quiz How to extract edges along a given orientation using morphological operations?

Morphological noise filtering An opening followed by a closing Or, a closing followed by an opening

Morphological noise filtering MATLAB DEMO

Morphological Region Filling Task: Given a binary image X and a (seed) point p, fill the region surrounded by the pixels of X and contains p. A: An image where only the boundary pixels are labeled 1 and others are labeled 0 Ac: The Complement of A We start with an image X0 where only the seed point p is 1 and others are 0. Then we repeat the following steps until it converges

Morphological Region Filling Ac A

Morphological Region Filling The boundary of an object A denoted by δ(A) can be obtained by first eroding the object and then subtracting the eroded image from the original image. A

Morphological Region Filling

Morphological Region Filling

Homotopic Transformation Homotopic tree r1 r2 h2 h1

Quitz: Homotopic Transformation What is the relation between an element in the ith and i+1th levels?

Skeletonization Skeleton by maximal balls: locii of the centers of maximal balls completely included by the object

Skeletonization Matlab Demo HW: Write an algorithm using morphologic operators to retrieve back the portions of the GOOD curves lost during pruning

after skeletonization Skeletonization and Pruning Skeletonization preserves both End points Topology Pruning preserves only after skeletonization after pruning after retrieval

Quench function Every location p on the skeleton S(X) of a shape X has an associated radius qX(p) of maximal ball; this function is termed as quench function The set X is recoverable from its skeleton and its quench function

Ultimate Erosion The ultimate erosion of a set X, denoted by Ult(X), is the set of regional maxima of the quench functions Morphological reconstruction: Assume two sets A, B such that B  A. The reconstruction σA(B) of the set A is the unions of all connected components of A with nonempty intersection with B. B A

Ultimate Erosion The ultimate erosion of a set X, denoted by Ult(X), is the set of regional maxima of the quench functions Morphological reconstruction: Assume two sets A, B such that B  A. The reconstruction σA(B) of the set A is the unions of all connected components of A with nonempty intersection with B.

Convex Hull A set A is said to be convex if the straight line joining any two points within A lies in A. Q: Is an empty set convex? Q: What ar4e the topological properties of a convex set? A convex hull H of a set X is the minimum convex set containing X. The set difference H – X is called the convex deficiency of X.

Geodesic Morphological Operations The geodesic distance DX(x,y) between two points x and y w.r.t. a set X is the length of the shortest path between x and y that entirely lies within X. ??

Geodesic Balls The geodesic ball BX(p,n) of center p and radius n w.r.t. a set X is a ball constrained by X.

Geodesic Operations The geodesic dilation δX(n)(Y) of the set Y by a geodesic ball of radius n w.r.t. a set X is : The geodesic erosion εX(n)(Y) of the set Y by a geodesic ball of radius n w.r.t. a set X is :

An example What happens if we apply geodesic erosion on X – {p} where p is a point in X?

Implementation Issue An efficient solution: select a ball of radius ‘1’ and then define

Morphological Reconstruction Assume that we want to reconstruct objects of a given shape from a binary image that was originally obtained by thresholding. All connected components in the input image constitute the set X. However, we are interested only a few connected components marked by a marker set Y.

How? Successive geodesic dilations of the set Y inside the bigger set X leads to the reconstruction of connected components of X marked by Y. The geodesic dilation terminates when all connected components of X marked by Y are filled, i.e., an idempotency is reached : This operation is called reconstruction and is denoted by ρX(Y).

Geodesic Influence Zone Let Y, Y1, Y2, ..Ym denote m marker sets on a bigger set X such that each of Y and Yis is a subset of X.

Reconstruction to Gray-Scale Images This requires the extension of geodesy to gray-scale images. Any increasing transformation defined for binary images can be extended to gray-level images A gray level image I is viewed as a stack of binary images obtained by successive thresholding – this process is called threshold decomposition Threshold decomposition principle

Reconstruction to Gray-Scale Images Returning to the reconstruction transformation, binary geodesic reconstruction ρ is an increasing transformation Gray-scale reconstruction: Let J, I be two gray-scale images both over the domain D such that J  I, the gray-scale reconstruction ρI(J) of the image I from J is defined as

Reconstruction to Gray-Scale Images