Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. Bell-Shaped Curves and Other Shapes Chapter 8.

Slides:



Advertisements
Similar presentations
The Standard Normal Curve Revisited. Can you place where you are on a normal distribution at certain percentiles? 50 th percentile? Z = 0 84 th percentile?
Advertisements

The Normal Distribution
The Normal distributions BPS chapter 3 © 2006 W.H. Freeman and Company.
Lecture 6 Bell Shaped Curves.
HS 67 - Intro Health Stat The Normal Distributions
Normal distribution. An example from class HEIGHTS OF MOTHERS CLASS LIMITS(in.)FREQUENCY
Chapter 6: Standard Scores and the Normal Curve
Topic 3 The Normal Distribution. From Histogram to Density Curve 2 We used histogram in Topic 2 to describe the overall pattern (shape, center, and spread)
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
2-5 : Normal Distribution
CHAPTER 3: The Normal Distributions Lecture PowerPoint Slides The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner.
BPS - 5th Ed. Chapter 31 The Normal Distributions.
Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. Bell-Shaped Curves and Other Shapes Chapter 8.
Chapter 11: Random Sampling and Sampling Distributions
Jan 21 Statistic for the day: The width of train tracks is 4 feet 8.5 inches. Why? Assignment: Read Chapter 9 Exercises from Chapter 8: 16, 18 These slides.
Objectives (BPS 3) The Normal distributions Density curves
Bell-Shaped Curves and Other Shapes
Basic Statistics Standard Scores and the Normal Distribution.
Normal Distributions.
Looking at Data - Distributions Density Curves and Normal Distributions IPS Chapter 1.3 © 2009 W.H. Freeman and Company.
In this chapter, we will look at using the standard deviation as a measuring stick and some properties of data sets that are normally distributed.
Statistics: Concepts and Controversies Normal Distributions
Section 7.1 The STANDARD NORMAL CURVE
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. 1 PROBABILITIES FOR CONTINUOUS RANDOM VARIABLES THE NORMAL DISTRIBUTION CHAPTER 8_B.
5.1 What is Normal? LEARNING GOAL Understand what is meant by a normal distribution and be able to identify situations in which a normal distribution is.
Section 2.2, Part 1 Standard Normal Calculations AP Statistics Berkley High School/CASA.
The distribution of heights of adult American men is approximately normal with mean 69 inches and standard deviation 2.5 inches. Use the rule.
Stat 1510: Statistical Thinking and Concepts 1 Density Curves and Normal Distribution.
NOTES The Normal Distribution. In earlier courses, you have explored data in the following ways: By plotting data (histogram, stemplot, bar graph, etc.)
Copyright ©2006 Brooks/Cole, a division of Thomson Learning, Inc. Turning Data Into Information Chapter 2.
Density Curves Can be created by smoothing histograms ALWAYS on or above the horizontal axis Has an area of exactly one underneath it Describes the proportion.
AP Statistics Monday, 21 September 2015 OBJECTIVE TSW examine density curves, z-scores, Chebyshev’s Rule, normal curves, and the empirical rule. ASSIGNMENT.
Essential Statistics Chapter 31 The Normal Distributions.
1 From density curve to normal distribution curve (normal curve, bell curve) Class 18.
Think about this…. If Jenny gets an 86% on her first statistics test, should she be satisfied or disappointed? Could the scores of the other students in.
The Standard Normal Distribution
IE(DS)1 May of the measures that are of interest in psychology are distributed in the following manner: 1) the majority of scores are near the mean 2)
Copyright © 2013, 2009, and 2007, Pearson Education, Inc. Chapter 6 Probability Distributions Section 6.2 Probabilities for Bell-Shaped Distributions.
The Normal distributions BPS chapter 3 © 2006 W.H. Freeman and Company.
BPS - 5th Ed. Chapter 31 The Normal Distributions.
Essential Statistics Chapter 31 The Normal Distributions.
IE(DS)1 Many of the measures that are of interest in psychology are distributed in the following manner: 1) the majority of scores are near the mean 2)
NORMAL DISTRIBUTION Chapter 3. DENSITY CURVES Example: here is a histogram of vocabulary scores of 947 seventh graders. BPS - 5TH ED. CHAPTER 3 2 The.
Copyright © 2014, 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
IPS Chapter 1 © 2012 W.H. Freeman and Company  1.1: Displaying distributions with graphs  1.2: Describing distributions with numbers  1.3: Density Curves.
Introduction to the Normal Distribution (Dr. Monticino)
Ch 2 The Normal Distribution 2.1 Density Curves and the Normal Distribution 2.2 Standard Normal Calculations.
Copyright © 2013, 2010 and 2007 Pearson Education, Inc. Chapter The Normal Probability Distribution 7.
The Standard Normal Distribution Section Starter Weights of adult male Norwegian Elkhounds are N(42, 2) pounds. What weight would represent the.
Normal Distributions (aka Bell Curves, Gaussians) Spring 2010.
Copyright © 2015, 2011, 2008 Pearson Education, Inc. Chapter 6, Unit C, Slide 1 Putting Statistics to Work 6.
Chapter 131 Normal Distributions. Chapter 132 Thought Question 2 What does it mean if a person’s SAT score falls at the 20th percentile for all people.
Chapter 3.3 – 3.4 Applications of the Standard Deviation and Measures of Relative Standing.
The Normal Distributions.  1. Always plot your data ◦ Usually a histogram or stemplot  2. Look for the overall pattern ◦ Shape, center, spread, deviations.
The distribution of heights of adult American men is approximately normal with mean 69 inches and standard deviation 2.5 inches. Use the rule.
z-Scores, the Normal Curve, & Standard Error of the Mean
Interpreting Center & Variability.
The Normal Distribution
Daniela Stan Raicu School of CTI, DePaul University
The Normal Probability Distribution
Normal Distribution.
Daniela Stan Raicu School of CTI, DePaul University
CHAPTER 3: The Normal Distributions
Warm Up If there are 2000 students total in the school, what percentage of the students are in each region?
Basic Practice of Statistics - 3rd Edition The Normal Distributions
4/29/13 Have out: Bellwork: assignment, graphing calculator,
Basic Practice of Statistics - 3rd Edition The Normal Distributions
The Normal Curve Section 7.1 & 7.2.
M3M8D6 Have out: Bellwork: assignment, graphing calculator,
Normal Distribution.
Presentation transcript:

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. Bell-Shaped Curves and Other Shapes Chapter 8

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 2 Thought Question 1: The heights of adult women in the United States follow, at least approximately, a bell-shaped curve. What do you think this means?

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 3 Thought Question 2: What does it mean to say that a man’s weight is in the 30 th percentile for all adult males?

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 4 Thought Question 3: A “standardized score” is simply the number of standard deviations an individual falls above or below the mean for the whole group. Male heights have a mean of 70 inches and a standard deviation of 3 inches. Female heights have a mean of 65 inches and a standard deviation of 2 ½ inches. Thus, a man who is 73 inches tall has a standardized score of 1. What is the standardized score corresponding to your own height?

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 5 Thought Question 4: Data sets consisting of physical measurements (heights, weights, lengths of bones, and so on) for adults of the same species and sex tend to follow a similar pattern. The pattern is that most individuals are clumped around the average, with numbers decreasing the farther values are from the average in either direction. Describe what shape a histogram of such measurements would have.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc Populations, Frequency Curves, and Proportions Move from pictures and shapes of a set of data to … Pictures and shapes for populations of measurements.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 7 Note: Height of curve set so area under entire curve is 1. Frequency Curves Smoothed-out histogram by connecting tops of rectangles with smooth curve. Frequency curve for population of British male heights. The measurements follow a normal distribution (or a bell-shaped or Gaussian curve).

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 8 Frequency Curves Not all frequency curves are bell-shaped! Frequency curve for population of dollar amounts of car insurance damage claims. The measurements follow a right skewed distribution. Majority of claims were below $5,000, but there were occasionally a few extremely high claims.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 9 Proportions Recall: Total area under frequency curve = 1 for 100% Mean British Height is inches. Area to the right of the mean is So about half of all British men are inches or taller. Key: Proportion of population of measurements falling in a certain range = area under curve over that range. Tables will provide other areas under normal curves.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc The Pervasiveness of Normal Curves Many populations of measurements follow approximately a normal curve: Physical measurements within a homogeneous population – heights of male adults. Standard academic tests given to a large group – SAT scores.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc Percentiles and Standardized Scores Your percentile = the percentage of the population that falls below you. Finding percentiles for normal curves requires: Your own value. The mean for the population of values. The standard deviation for the population. Then any bell curve can be standardized so one table can be used to find percentiles.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 12 Standardized Scores Standardized Score (standard score or z-score): observed value – mean standard deviation IQ scores have a normal distribution with a mean of 100 and a standard deviation of 16. Suppose your IQ score was 116. Standardized score = (116 – 100)/16 = +1 Your IQ is 1 standard deviation above the mean. Suppose your IQ score was 84. Standardized score = (84 – 100)/16 = –1 Your IQ is 1 standard deviation below the mean. A normal curve with mean = 0 and standard deviation = 1 is called a standard normal curve.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 13 Table 8.1: Proportions and Percentiles for Standard Normal Scores

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 14 Finding a Percentile from an observed value: 1.Find the standardized score = (observed value – mean)/s.d., where s.d. = standard deviation. Don’t forget to keep the plus or minus sign. 2.Look up the percentile in Table 8.1. Suppose your IQ score was 116. Standardized score = (116 – 100)/16 = +1 Your IQ is 1 standard deviation above the mean. From Table 8.1 you would be at the 84 th percentile. Your IQ would be higher than that of 84% of the population.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 15 Finding an Observed Value from a Percentile: 1.Look up the percentile in Table 8.1 and find the corresponding standardized score. 2.Compute observed value = mean +(standardized score)(s.d.), where s.d. = standard deviation. “Jury urges mercy for mother who killed baby. … The mother had an IQ lower than 98 percent of the population.” (Scotsman, March 8, 1994,p. 2) Mother was in the 2 nd percentile. Table 8.1 gives her standardized score = –2.05, or 2.05 standard deviations below the mean of 100. Her IQ = (–2.05)(16) = 100 – 32.8 = 67.2 or about 67. Example 1: Tragically Low IQ

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 16 Example 2: Calibrating Your GRE Score GRE Exams between 10/1/89 and 9/30/92 had mean verbal score of 497 and a standard deviation of 115. (ETS, 1993) Suppose your score was 650 and scores were bell-shaped. Standardized score = (650 – 497)/115 = Table 8.1, z = 1.33 is between the 90 th and 91 st percentile. Your score was higher than about 90% of the population.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 17 Example 3: Removing Moles Company Molegon: remove unwanted moles from gardens. Standardized score = (68 – 150)/56 = –1.46, and Standardized score = (211 – 150)/56 = Table 8.1: 86% weigh 211 or less; 7% weigh 68 or less. About 86% – 7% = 79% are within the legal limits. Weights of moles are approximately normal with a mean of 150 grams and a standard deviation of 56 grams. Only moles between 68 and 211 grams can be legally caught.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc z-Scores and Familiar Intervals Empirical Rule For any normal curve, approximately … 68% of the values fall within 1 standard deviation of the mean in either direction 95% of the values fall within 2 standard deviations of the mean in either direction 99.7% of the values fall within 3 standard deviations of the mean in either direction A measurement would be an extreme outlier if it fell more than 3 s.d. above or below the mean.

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 19 Heights of Adult Women 68% of adult women are between 62.5 and 67.5 inches, 95% of adult women are between 60 and 70 inches, 99.7% of adult women are between 57.5 and 72.5 inches. Since adult women in U.S. have a mean height of 65 inches with a s.d. of 2.5 inches and heights are bell-shaped, approximately …

Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 20 For Those Who Like Formulas