The ALMA view of a Carbon Rich AGB Star: The Spectrum of IRC+10216

Slides:



Advertisements
Similar presentations
HCN Near IK Tau and TX Cam Kevin Marvel American Astronomical Society Waikoloa Beach Outrigger Resort Kona-Kailua, Hawaii Monday July 1, 2002.
Advertisements

Nuria Marcelino (NRAO-CV) Molecular Line Surveys of Dark Clouds Discovery of CH 3 O.
Peter Schilke Submillimeter Astronomy June 15, 2005 Line Surveys Peter Schilke, MPIfR.
FTIR Isotopic and DFT Studies of Transition Metal-Carbon Clusters Condensed in Solid Argon: CrC 3 S.A. Bates, C.M.L. Rittby, and W.R.M. Graham Department.
Phosphorus Chemistry in Circumstellar Envelopes: PN in IRC+10216, VY CMa, and CRL 2688 Aldo J. Apponi, Stefanie N. Milam, DeWayne T. Halfen, Emily D. Tenenbaum,
Studying circumstellar envelopes with ALMA
The 69 th International Symposium on Molecular Spectroscopy June 19, 2014 Comparative Chemistry of Planetary Nebulae: Jessica L. Edwards Lucy M. Ziurys.
Considerations for Millimeter-wave Observations Amy Lovell, Agnes Scott College Fifth NAIC/NRAO Single-Dish Summer School July 2009.
Comets with ALMA N. Biver, LESIA, Paris Observatory I Comets composition Chemical investigation and taxonomy Monitoring of comet outgassing II Mapping.
The Green Bank Telescope a powerful instrument for enhancing ALMA science Unblocked Aperture Low sidelobes gives high dynamic range Resistance to Interference.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Millimeter Spectroscopy Joanna Brown. Why millimeter wavelengths? >1000 interstellar & circumstellar molecular lines Useful for objects at all different.
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Submillimeter Astronomy in the era of the SMA, Cambridge, June 14, 2005 Star Formation and Protostars at High Angular Resolution with the SMA Jes Jørgensen.
Star Formation in our Galaxy Dr Andrew Walsh (James Cook University, Australia) Lecture 2 – Chemistry and Star Formation 1.Basic chemical interactions.
 Molecule Search: Summing Lines Demo: Detection of Isotopomers of HC 5 N In GHz GBT Survey of TMC Glen Langston (NSF) + Many Students.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Spectral Line Survey with SKA Satoshi Yamamoto and Nami Sakai Department of Physics, The Univ. of Tokyo Tomoya Hirota National Astronomical Observatory.
Water maser emission in Bok globules Bok Globules Bok globules are small (
Mid-infrared Spectral Evolution of Post-AGB Stars Kevin Volk, Gemini Observatory.
Molecular Gas and Dust in SMGs in COSMOS Left panel is the COSMOS field with overlays of single-dish mm surveys. Right panel is a 0.3 sq degree map at.
1 ALMA Science Results ALMA Detects Ethyl Cyanide on Titan ALMA detected C 2 H 5 CN in 27 rotational lines at 1.3mm – HC 3 N, CH 3 CN and CH 3 CCH simultaneously.
Molecular Survival in Planetary Nebulae: Seeding the Chemistry of Diffuse Clouds? Jessica L. Dodd Lindsay Zack Nick Woolf Emily Tenenbaum Lucy M. Ziurys.
A Study of HCO + and CS in Planetary Nebulae Jessica L. Edwards Lucy M. Ziurys Nick J. Woolf The University of Arizona Departments of Chemistry and Astronomy.
VLASS – Galactic Science Life cycle of star formation in our Galaxy as a proxy for understanding the Local Universe legacy science Infrared GLIMPSE survey.
A Confusion Limited Spectral Survey of Orion KL ( GHz) And a 2D Spectral Line Survey at 1mm José Cernicharo (CAB. INTA-CSIC) Nuria Marcelino (NRAO),
Band 2 Workshop NRAO May 29, 2013 ALMA Band 2: Future Prospects for Scientific Studies Lucy M. Ziurys Staff and Students Arizona Radio Observatory University.
62 nd International Symposium on Molecular Spectroscopy June 18-22, 2007 The Pure Rotational Spectra of FeCN (X 6  i ) and FeNC (X 6  i ): It Had to.
URSI January 5, 2009 Science at the ARO with ALMA-Style Frontends Lucy M. Ziurys R.W. Freund And the Staff of ARO.
J. Cernicharo. “The interpreation H 2 O Observations” Water Vapour in Astrophysics Models and Observations FROM ISO, SWAS and ODIN TO HERSCHEL José Cernicharo.
Unbiased Spectral Survey of the low mass protostar IRAS A
ASTROCHEMISTRY IN THE SUBMM DOMAIN Bérengère Parise With kind inputs from my MPIfR colleagues: A. Belloche, S. Leurini, P. Schilke, S. Thorwirth, F. van.
Molecular Clouds in in the LMC at High Resolution: The Importance of Short ALMA Baselines T. Wong 1,2,4, J. B. Whiteoak 1, M. Hunt 2, J. Ott 1, Y.-N. Chin.
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Discovery of IRC10216 Eric Becklin Offscale. IRC Old carbon rich red giant with a dusty expanding shell at km s -1 Harry Kroto 2004.
June 21, th International Symposium on Molecular Spectroscopy Detection of FeCN (X 4  i ) in the Circumstellar Envelope of IRC Lindsay N.
Spectral Line Surveys with the CSO Susanna L. Widicus Weaver, Department of Chemistry, Emory University Matthew Sumner, Frank Rice, Jonas Zmuidzinas, Department.
The planet-forming zones of disks around solar- mass stars: a CRIRES evolutionary study VLT Large Program 24 nights.
A Survey of Large Molecules toward the Protoplanetary Nebula CRL 618 Anthony J. Remijan NASA/GSFC Friedrich Wyrowski Max-Planck-Institut fur Radioastronomie.
64th International Symposium on Molecular Spectroscopy June 22 – 26, 2009 Millimeter Detection of AlO (X 2 Σ + ): Metal Oxide Chemistry in the Envelope.
ISM & Astrochemistry Lecture 6. Stellar Evolution.
Solar System observations with APEX Observatoire de Paris, France Emmanuel Lellouch.
Héctor G. Arce Yale University Image Credit: ESO/ALMA/H. Arce/ B. Reipurth Shocks and Molecules in Protostellar Outflows.
70 th International Symposium on Molecular Spectroscopy June 2015 First Scientific Observations with the New ALMA Prototype Antenna of the Arizona Radio.
Looking for Titanium in space F. Pauzat, J. Ferré, Y. Ellinger Laboratoire d’Etude Théorique des Milieux Extrêmes Cet exposé s’appuie sur le travail réalisé.
Astrochemistry University of Helsinki, December 2006 Lecture 4 T J Millar, School of Mathematics and Physics Queen’s University Belfast,Belfast BT7 1NN,
The Chemistry of PPN T. J. Millar, School of Physics and Astronomy, University of Manchester.
Exploring Molecular Complexity with ALMA (EMoCA): High-Angular-Resolution Observations of Sagittarius B2(N) at 3 mm Holger S. P. Müller A. Belloche (PI),
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling,
A Missing Link: The Rotational Spectrum, Geometrical Structure, and Astronomical Discovery of Disilicon Carbide, SiCSi M.-A. Martin-Drumel, C. A. Gottlieb,
Jes Jørgensen (Leiden), Sebastien Maret (CESR,Grenoble)
Detection of the CCP (X 2  r ) Radical in IRC+10216: A New Interstellar Phosphorus-Containing Species DeWayne T. Halfen Steward Observatory, Arizona Radio.
An Experimental Approach to the Prediction of Complete Millimeter and Submillimeter Spectra at Astrophysical Temperatures Ivan Medvedev and Frank C. De.
ISM & Astrochemistry Lecture 1. Interstellar Matter Comprises Gas and Dust Dust absorbs and scatters (extinguishes) starlight Top row – optical images.
65th International Symposium on Molecular Spectroscopy June 21 – 25, 2010 Exotic Metal Molecules In Oxygen-Rich Envelopes: Detection of AlOH(X 1 Σ + )
NML Cyg The ARO 1 mm Survey of the Oxygen-rich Envelope of Supergiant Star NML Cygnus Jessica L. Edwards, Lucy M. Ziurys, and Nick J. Woolf The University.
Alexander V. Lapinov, G.Yu.Golubiatnikov, S.P.Belov Inst. of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia CH 3 OH sub-Doppler.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
A Green Bank Telescope Search for ortho-benzyne (o-C6H4) in CRL 618
FTIR Matrix and DFT Study of the Vibrational Spectrum of NiC3Ni
High Resolution Submm Observations of Massive Protostars
TA06 International Symposium on Molecular Spectroscopy TA. Astronomy
Gas phase interstellar and circumstellar molecules
星际介质中预生物分子的化学建模研究 Chemical Modeling Studies of Interstellar Prebiotic Molecules 全冬晖 July 28th, 2018.
LABORATORY AND ASTRONOMICAL DISCOVERY OF HYDROMAGNESIUM ISOCYANIDE
FSU Harry Kroto 2004.
Millimeter Megamasers and AGN Feedback
Circumstellar SiO masers in long period variable stars
Presentation transcript:

The ALMA view of a Carbon Rich AGB Star: The Spectrum of IRC+10216 J. Cernicharo, M. Agúndez, F. Daniel, A. Castro-Carrizo, N. Marcelino, C. Joblin, M. Guélin, J. Goicoechea J. Cernicharo, ICMM, Group of Molecular Astrophysics, jose.cernicharo@csic.es

IRC+10216 observed at all wavelengths with single dishes Brightest mid-IR source in the sky. Nearest C-rich AGB star Sensitive Millimeter Line surveys (rms below a few mK) (2mm = Cernicharo et al., 2000, A&A SS, 142, 181) (3mm = Cernicharo et al., 2014, A&A) (1mm = ongoing) (490-1900 GHz line survey with HIFI; Cernicharo et al., 2010) High spectral resolution Infrared line surveys (TEXES) 14  m region (C2H2, HCN & SiS) Fonfría et al., 2008, ApJ 50% of ISM molecules detected in this source (polar molecules): Metal-bearing : NaCl, KCl, AlCl, AlF, MgNC, MgCN, AlCN, SiNC, SiCN, KCN, NaCN, FeCN,… Carbon chains: CCH, C3H, C4H, C5H, C6H, C7H, C8H, CN, C3N, C5N, HCN, HCCN, HC3N, HC4N, HC5N, HC7N, HC9N Silicon-bearing species: SiO, SiS, SiC, SiC2, SiC3, SiC4 Sulphur-bearing species: CS, CCS, CCCS, C5S Phosphorus-bearing species: PN, CP, HCP, CCP, PH3 Anions: CN-, C3N-, C5N-, C4H-, C6H-, C8H- Nanocosmos Yebes – 06/2/2014

IRC+10216 CO J=2-1 30m Data Extreme Outer Shells Outer carbon radicals Star radius is 0.02”. CO envelope radius >200” IRC+10216 CO J=2-1 30m Data Cernicharo et al. 2014 Extreme Outer Shells Outer carbon radicals Shell (r=14”) Inner Refractory Species. Dust Formation Zone (<1”)

Inner shells Outer shells Very poorly known region Por último, la envoltura circunestelar posee una elevada riqueza de moléculas. En este esquema se representa la estructura de una envoltura circunestelar típica, la cual se extiende desde la superficie de la gigante roja (con temperaturas de 2000-3000 K y densidades de 1e15 cm-3) hasta una distancia de hasta 1 año luz (en donde la temperatura es de unos cuantos grados Kelvin y la densidad es de unas pocas partículas por cm3). En las regiones más cercanas a la fotosfera el gas es denso y caliente y la composición viene en gran medida dada por el equilibrio químico, esto es se forman moléculas estables (CO, H2O, SiO en estrellas ricas en oxigeno y CO, C2H2, y HCN en envoltura ricas en carbono). La composición química puede verse alterada por procesos como ondas de choque asociadas a la pulsación de la estrella (las estrellas AGB son estrellas variables), y a la formación del polvo, la cual ocurre a partir de 5-20 R* cuando la temperatura cae por debajo de unos 1000 K. En la envoltura externa las moléculas comienzan a estar expuestas al campo de radiación UV del ISM y son fotodisociadas, lo que da lugar a una fotoquímica en que los radicales formados intervienen en reacciones químicas rápidas y dan lugar a nuevas especies químicas. Esta química es particularmente rica en envolturas ricas en carbono.

The spectrum of IRC+10216 is rather well known The spectrum of IRC+10216 is rather well known. We are able to identify all isotopologues and vibrationally excited states of abundant species with single dishes and interferometers at 3 and 2 mm and in the line survey with HIFI/Herschel. Line survey at l = 3 mm carried out with the IRAM 30-m radio telescope: - 80.05-115.75 GHz - 1339 emission lines (~37 lines/GHz) - 886 assigned to rotational transitions of 60 molecules (+ different isotopoloques and vibrationally excited states) - 453 unassigned lines (only 31 with TA* > 10 mK) –before anions- - high sensitivity: rms(TA*) < 1 mK for most frequencies Nanocosmos Yebes – 06/2/2014 Rest Frequency (GHz)

LINE SURVEYS Esta figura recoge el conjunto de datos de que disponemos sobre IRC +10216. Consiste en el espectro a longitudes de onda milimétricas (desde 80 a 280 GHz) tal y como ha sido obtenido con el telescopio IRAM 30-m. El espectro consiste en líneas en emisión

 que corresponden a transiciones de rotación de diversas moléculas. Cernicharo et al. 2000 Cernicharo et al. en preparación  que corresponden a transiciones de rotación de diversas moléculas. Como se puede apreciar se ha cubierto prácticamente todo el rango espectral accesible con este telescopio (80-280 GHz). Los receptores actuales operan hasta 360 GHz y seguramente merecería la pena investigar este rango espectral en un futuro próximo. La banda de 1.3 mm es un composite de varias observaciones llevadas a cabo en los últimos 10 años. El barrido espectral a 2 mm se encuentra publicado en Cernicharo et al. 2000. Por su parte, el barrido espectral a 3 mm se encuentra actualmente en preparación para ser publicado y constituye la parte más novedosa.

Cernicharo et al., 2010, A&A, 521, L8

HCN NH3 CN HC3N C3N HC5N HNC CH3CN HC7N HC9N CH2CN HC2N C5N HCCNC C2H3CN C5N- HC4N C3N- HNCCC CO H2O OH H2CO C3O HCO+ C2H2 CH4 C2H C4H C2 C3 C5 l-C3H C6H C5H c-C3H2 CH3C2H c-C3H C2H4 H2C4 C8H C7H H2C6 C6H- C8H- H2C3 C4H- 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 1(-3) 1(-7) 4(-8) 1.3(-8) 2(-9) 7(-10) 8(-5) 3.5(-6) 3(-6) 2.5(-6) 1(-6) 5(-8) 3(-8) 2(-8) 1.4(-8) 8(-9) 3(-9) 1.5(-9) 3(-10) 2(-5) 2(-6) 1.7(-6) 1.4(-6) 4(-7) 2(-7) 7(-9) 6(-9) 4(-9) 2.3(-9) 1.1(-9) 5(-10) CS C2S C3S H2CS H2S C5S 5(-7) 1.2(-8) 1.2(-9) SiC2 SiS SiH4 SiO SiC SiN c-SiC3 SiC4 SiCN SiNC 1.2(-6) 2.2(-7) 1.2(-7) HCP CP PH3 PN C2P 2.5(-8) 1(-8) 1(-9) AlCl NaCN MgNC AlF NaCl AlNC MgCN KCl 3.5(-8) 7.5(-9) 2.5(-10)

ALMA observations in Cycle 0 between 255-275 GHz Four frequency settings with 2 hours of observing time Good UV coverage even with 16 antennas However, serious problems with the data, wrong frequency scale, selfcalibration absolutely necessary to reach the sensitivity goals Cycle 1 observations between 680-700 GHz expected next months Cycle 2 full 3mm line survey also expected soon

The ALMA view of IRC+10216: A forest of U Lines HCN in high energy vibrational levels (>10000 K) SiC2 in v3 and 2v3,… SiS up to v=10 (& isotopologues) SiO up to v=3 HNC in vibrational levels up to 6000 K + hundreds of U lines Cernicharo et al., 2013 ApJ Letters, 778, L25

Plenty of unknown narrow features!!! IRC+10216 as view by ALMA Plenty of unknown narrow features!!! Cernicharo et al., 2013, ApJ, 778, L25 See also Patel et al. 2010, for narrow U-lines at 350 GHz with the SMA Cernicharo et al., 2011, A&A, for narrow lines from HCN v#0

Looking for known species coming ONLY from the dust formation zone. HNC and HCN. Deriving physical conditions Observed (black curves) and modeled (red) line profile of the J =3-2 in vibrationally excited states of HNC as observed with ALMA near ∼270 GHz. The blue and green curves show the corresponding ν2 lines of HCN (blue) and H13CN (green) observed in the same setup, scaled down by factors of 50 and 6 respectively. HNC frequencies (in MHz) and upper level energies (in kelvins) are given at the top of each box (Cernicharo et al., 2013, submitted to ApJ Letters)

Physical parameters HNC abundance profile HNC vibrationally excited traces the region 1-3 R*, i.e., the dust nucleation zone. Mergin HNC and HCN vibrationally excited data will provide a detailed analysis of the 1-20 R* zone.

ALMA from the star to the ISM The physics and the chemistry from the dust formation zone

We have used our own catalogs (MADEX) in addition to CDMS & JPL to try to identify all these U-lines without success. MADEX is very well adapted to the study of the molecular content of IRC+10216 (4950 species with spectroscopic accuracy). No clear identification for all these lines yet. Probably species formed in the dust formation zone, participating in the nucleation of dust seeds and dust growth. Silicon-bearing clusters, carbon-clusters, and metal-bearing species that disappear after a few stellar radii. J=0 l-doubling transitions of the vibrational levels of HCN involving v2. ALMA observations of evolved stars will require a huge effort from the molecular spectroscopy community to characterize the gas composition in the dust formation zone. Even Cycle 0 observations produce spectacular images of the innermost regions of the envelope of CW Leo (IRC+10216). Mass loss history.

Thank you very much for your attention