ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
Exclusive   and  electro-production at high Q 2 in the resonance region Mark Jones Jefferson Lab TexPoint fonts used in EMF. Read the TexPoint manual.
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
R Measurement at charm resonant region Haiming HU BES Collaboration Charm 2007 Cornell University Ithaca, NY. US.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Status Report of Neutron Detector Simulation Development Brian Roeder Postdoc LPC Caen 20 Sept
The R-matrix method and 12 C(  ) 16 O Pierre Descouvemont Université Libre de Bruxelles, Brussels, Belgium 1.Introduction 2.The R-matrix formulation:
1 An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 – Dec. 9, 2005 Georg P. Berg.
1. Introduction 2.     3.  p    n 4.     5.     A   A 6. Discussion 7. Summary Bosen Workshop 2007 Review on.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Cross section measurements for analysis of D and T in thicker films Liqun Shi Institute of Modern Physics, Fudan University, Shanghai, , People’s.
Joint IAEA-ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies Student’s presentation Calculation of correction factors for neutron.
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
Nuclear Level Densities of Residual Nuclei from evaporation of 64 Cu Moses B. Oginni Ohio University SNP2008 July 9, 2008.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Ruđer Bošković Institute, Zagreb, Croatia CRP: Development of a Reference Database for Ion Beam Analysis Measurements of differential cross sections for.
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
Manolis Benis Solid angle correction factors for hemispherical and two-stage parallel plate analysers in the detection of long lived projectile Auger states.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
Depth Profiling with Low-Energy Nuclear Resonances H.-W. Becker, IAEA May 2011 CRP: Reference Database for Particle Induced Gamma-ray Emission (PIGE) Ruhr-University.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
6th Dec 2011 ISOLDE Workshop, CERN Reaction Dynamics studies with 6,7 Li and 9 Be nuclei at Pelletron, Mumbai, India Vivek Parkar University of Huelva,
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
Radiation damage calculation in PHITS
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
ANC Techniques and r-matrix analysis Santa Fe, April 2008 ANC Techniques and r-matrix analysis Grigory Rogachev.
Study of unbound 19 Ne states via the proton transfer reaction 2 H( 18 F,  + 15 O)n HRIBF Workshop – Nuclear Measurements for Astrophysics C.R. Brune,
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
This project is funded by the NSF through grant PHY , and the Universities of JINA. The Joint Institute for Nuclear Astrophysics Henderson DUSEL.
The concept of compound nuclear reaction: a+B  C  d+F The particle transmission coefficients T are usually known from cross sections of inverse reactions.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
THEORETICAL PREDICTIONS OF THERMONUCLEAR RATES P. Descouvemont 1.Reactions in astrophysics 2.Overview of different models 3.The R-matrix method 4.Application.
Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING.
Measuring fusion excitation functions with RIBs using the stacked target technique: problems and possible solutions Maria Fisichella Nucleus Nucleus 2015.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Activities and Opportunities at the accelerator lab in Bochum H.-W. Becker, NUPECC Small Scale Facilities workshop, 7./8. Sep
Indirect measurements of the -3 keV resonance in the 13 C(α, n) 16 O reaction: the THM approach Marco La Cognata.
Jun Chen Department of Physics and Astronomy, McMaster University, Canada For the McMaster-NSCL and McMaster-CNS collaborations (5.945, 3+ : **) (5.914,
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory NPA5 April 7, 2011 Upper limit on the molecular resonance strengths in the.
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
12th Geant4 Space Users Workshop
Problematics Present status Perspectives A. Lefebvre-Schuhl
Resonances in the 12C(α,γ)16O reaction
Direct measurement of 4He(12C,16O)g reaction at KUTL*
1. Introduction Secondary Heavy charged particle (fragment) production
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Rare Isotope Spectroscopic INvestigation at GSI
Recoil charge state distributions in 12C(a,g)16O at DRAGON
Elastic alpha scattering experiments
Rare Isotope Spectroscopic INvestigation at GSI
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar Hydrogen and Helium Burning La Fonda, Santa Fe, NM April 21 – 23, 2008

12 C(  ) 16 O „The holy grail of nuclear astrophysics“ (W. Fowler) Cascades E1,E2,E0 ? 6.05? ERNA  -measurements

Recoil Separator ERNA: an alternative approach to measure the reaction 12 C(  ) 16 O Requirements angular / energy acceptance knowledge of charge state distribution high purity of incoming 12 C beam suppression of 12 C beam ion source dynamitron tandem accelerator ion beam purification Gastarget & Post-Stripper singlet 60° magnet  E - E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic qu adrupole multiplets triplet side FC Advantages high efficiency ~p q measure  tot independent of  ‘s (mostly) background free  -ray coincidences possible N recoils detected = N projectiles  n target    T ERNA  p q

Recoil Separator ERNA: an alternative approach to measure the reaction 12 C(  ) 16 O Requirements angular / energy acceptance knowledge of charge state distribution high purity of incoming 12 C beam suppression of 12 C beam ion source dynamitron tandem accelerator ion beam purification Gastarget & Post-Stripper singlet 60° magnet  E - E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic qu adrupole multiplets triplet side FC Advantages high efficiency ~p q measure  tot independent of  ‘s (mostly) background free  -ray coincidences possible N recoils detected = N projectiles  n target    T ERNA  p q

Density Determination Energy Loss (Stopping Power) 7 Li(  ) 11 B 7 Li(  ´) 7 Li *Gastarget

Recoil Separator ERNA: an alternative approach to measure the reaction 12 C(  ) 16 O Requirements angular / energy acceptance knowledge of charge state distribution high purity of incoming 12 C beam suppression of 12 C beam ion source dynamitron tandem accelerator ion beam purification Gastarget & Post-Stripper singlet 60° magnet  E - E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic qu adrupole multiplets triplet side FC Advantages high efficiency ~p q measure  tot independent of  ‘s (mostly) background free  -ray coincidences possible N recoils detected = N projectiles  n target    T ERNA  p q

Charge State Distribution

Charge State Distribution electron loss calculated q recoil = q carbon measured q recoil = q carbon C 3+  16 O 6+ Ecm=3.2 MeV integrate Solution: post-target stripper

Recoil Separator ERNA: an alternative approach to measure the reaction 12 C(  ) 16 O Requirements angular / energy acceptance knowledge of charge state distribution high purity of incoming 12 C beam suppression of 12 C beam ion source dynamitron tandem accelerator ion beam purification Gastarget & Post-Stripper singlet 60° magnet  E - E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic qu adrupole multiplets triplet side FC Advantages high efficiency ~p q measure  tot independent of  ‘s (mostly) background free  -ray coincidences possible N recoils detected = N projectiles  n target    T ERNA  p q

Acceptance Bad tuning Good tuning Matrix calculations: COSY INFINITY These just give STARTING values: Tune Separator with 16 O pilot beam!

Angular acceptance E cm = 2.4 MeV q rec = 6+

Angular Acceptance B ext. Triplet changed by 0.7% !

Energy Acceptance transmission  E / E 0 [ % ] experimental calculated by variation of beam energy

Recoil Separator ERNA: an alternative approach to measure the reaction 12 C(  ) 16 O Requirements angular / energy acceptance knowledge of charge state distribution high purity of incoming 12 C beam suppression of 12 C beam ion source dynamitron tandem accelerator ion beam purification Gastarget & Post-Stripper singlet 60° magnet  E - E telescope recoil separation doublet analysing magnet recoil focussing Wien filter magnetic qu adrupole multiplets triplet side FC Advantages high efficiency ~p q measure  tot independent of  ‘s (mostly) background free  -ray coincidences possible N recoils detected = N projectiles  n target    T ERNA  p q

Typical  E-E Spectra E cm = 2.2 MeV suppression ~ 1·10 11 E cm = 4.4 MeV suppression ~ 3·10 9

12 C(  ) 16 O total cross section

Comparison ERNA Calculation Kunz. et al. (Kunz R. et al., ApJ 567, )  Basic resonance properties well reproduced  Clear need for improved (new) R-Matrix calculation

New R-Matrix code rewritten from scratch rewritten from scratch utilizing classical formalism OR C. Brune’s alternative parameterization utilizing classical formalism OR C. Brune’s alternative parameterization all relevant channels included  -decay ( 16 N), (  ), ( ,  ) [external (direct) capture] all relevant channels included  -decay ( 16 N), (  ), ( ,  ) [external (direct) capture]

16 N decay Fit to E1 groundstate data Assuncao et al. Scattering data taken from: D’Agostino Bruno M. et al., Nuovo Cimento A27, 1 (1975) Plaga R. et al., Nucl. Phys. A465, 291 (1987) Calculation with parameters from: Tischhauser P. et al., Phys. Rev. Lett. 88, (2002)

Results  (E)=S(E)·E -1 · e -2  Compare to old R-Matrix calculation [Kunz et al., APJ 567, (2002)] New data available: capture to E x =6.05 MeV Level (DRAGON) No sign of „missing amplitude“

total cross section data available in broad energy range  fit needs improvements  fit to total data should correlate different amplitudes Monte Carlo Error Estimate Normalization (e.g. different E1 GS data sets) Outlook

ERNA Collaboration Bochum A. Di Leva R. Kunz D. Rogalla C. Rolfs F. Schümann D. Schürmann F. Strieder H.-P. Trautvetter Naples & Caserta N. De Cesare L. Gialanella A. D’Onofrio G. Imbriani C. Lubritto A. Ordine V. Roca M. Romano F. Terrasi Thank you!