Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi,

Slides:



Advertisements
Similar presentations
Crystal Field Theory The relationship between colors and complex metal ions.
Advertisements

Metal Complexes -- Chapter 24
Lecture 10 -Further Consequences of d-Orbital Splitting
Inorganic Chemistry Laboratory
Photoelectron Spectroscopy Lecture 9: Core Ionizations –Information from core ionization data –Separating charge and overlap effects Jolly’s LOIP Model.
Ch 10 Lecture 3 Angular Overlap
2-1 Orbitals and energetics Bonding and structure Ligand field theory Charge Transfer Molecular orbital theory Provide fundamental understanding of chemistry.
Coordination Chemistry II
Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d1, d4, d6 and d9 ions Lecture 2: Interpreting electronic.
Lecture 22 Electronic structure of Coordination Compounds 1) Crystal Field Theory Considers only electrostatic interactions between the ligands and the.
Slide 2/22 CHEM2402/2912/2916 [Part 2] A/Prof Adam Bridgeman Room: Office.
Lecture 17. Jahn-Teller distortion and coordination number four
Coordination Chemistry Bonding in transition-metal complexes.
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Placing electrons in d orbitals (strong vs weak field)
Lecture 28 Electronic Spectra of Coordination Compounds MLx (x = 4,6) 1) Terms of a free d2 metal atom The total number of microstates for an isolated.
6  ligands x 2e each 12  bonding e “ligand character” “d 0 -d 10 electrons” non bonding anti bonding “metal character” ML 6  -only bonding The bonding.
1 Electronic (UV-visible) Spectroscopy | Electronic | XPS UPS UV-visible.
2002 London NIRT: Fe 8 EPR linewidth data M S dependence of Gaussian widths is due to D-strainM S dependence of Gaussian widths is due to D-strain Energies.
Coordination Chemistry Bonding in transition-metal complexes.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
Big-picture perspective: The interactions of the d orbitals with their surrounding chemical environment (ligands) influences their energy levels, and this.
Transition Metals, Compounds and Complexes or
Transition Metal Complex Bonding and Spectroscopy Review
Spinel Structures. CFT aids in understanding the arrangements of metal ions in spinel structures (R.C. Chpt.12). READ R.C. WHERE SPINEL STRUCTURES ARE.
High Spin Ground States: d2, d3, d6, and d7
Introduction to Single Molecular Magnet
CHAPTER 5: CRYSTAL FIELD THEORY
Crystal Field Theory Focus: energies of the d orbitals Assumptions
Crystal Field Theory The relationship between colors and complex metal ions.
Coordination Chemistry:
Chap 24 Part 2 Color and Magnetism  The color of the complex is the sum of the light not absorbed (reflected) by the complex.Color Color of a complex.
Bonding in coordination compounds
Coordination Chemistry II
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Crystal Field Theory i) Separate metal and ligands have high energy ii) Coordinated Metal - ligand get stabilized iii) Metal and Ligands act as point charges.
Crystal Field Theory, Electronic Spectra and MO of Coordination Complexes Or why I decided to become an inorganic chemist or Ohhh!!! The Colors!!!
Christian R. Goldsmith Auburn University Department of Chemistry and Biochemistry.
Unit 3 Summary. Crystal Field Theory x z y M n Which d-orbitals are effected the most?
Co-ordination Chemistry Theories of Bonding in Co-ordination compound. 1. Valence Bond Theory 2. Crystal Field Theory 3. Molecular Orbital Theory.
Macroscopic quantum effects generated by the acoustic wave in molecular magnet 김 광 희 ( 세종대학교 ) Acknowledgements E. M. Chudnovksy (City Univ. of New York,
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Chem. 1B – 12/1 Lecture. Announcements I Exam 3 Results –Average was 66.3% –Distribution (narrower than other exams) –Problems where students did poorly.
Slide 2/12 Schedule Lecture 4: Re-cap Lecture 5:  -Acceptor Ligands and Biology N 2, CO, N 2 and O 2 complexes Lecture 6: M-M bonding Multiple bonds.
Single Molecular Magnets
Single-Molecule Magnets: A Molecular Approach to Nanomagnetism George Christou Department of Chemistry, University of Florida Gainesville, FL ,
Ligand field theory considers the effect of different ligand environments (ligand fields) on the energies of the d- orbitals. The energies of the d orbitals.
Naming Compounds With Transition Metals. Naming Transition Metals The Stock System Transition Metals have variable oxidation numbers so we have to tell.
Nagoya Univ. Kunio Awaga
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
Sub-Topics Introduction to Transition Metals
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Theoretical description of electrons in single molecule magnets Ernest R Davidson Universities of Washington and North Carolina.
NMR Studies of nanoscale molecular magnets Y. Furukawa Y. Fujiyoshi S. Kawakami K. Kumagai F. Borsa P. Kogerler Hokkaido University (Japan) Pavia University.
Transition-Metal Complexes are extremely colorful!
Dynamics of novel molecular magnets V-ring and rare earth compounds Okayama Univ. H. Nojiri Introduction Magnetization step in V-rectangular ring Short.
Coordination Chemistry: Bonding Theories
Electronic Spectra of Coordination Compounds
Chem. 1B – 11/17 Lecture.
Metal-Ligand bonding in transition metal complexes
Andrew Gomella1,2, S. Yoshii,2 T. Zenmoto,2 M. Yasui,2 M. Hayashi,2 G
Crystal Field Theory The relationship between colors and complex metal ions.
Lecture 8: Volume Interactions
Syntheses of High-spin Molecules
Coordination Chemistry: Ligand Field Theory
Magnetic Properties of Coordination Compounds
Structure and magnetic properties of Mn11Cr with a half-integer spin
Lecture 8: Volume Interactions
KNOCKHARDY PUBLISHING
Lecture 5: p-Acceptor Ligands and Biology N2, CO, N2 and O2 complexes
Presentation transcript:

Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi, Yamashita ( Univ. of Tsukuba ) Dr. M. Nakano (Osaka Univ.) HF-EPR Prof. H. Nojiri (Okayama Univ.) Low-temperature Magnetic measurements Profs. A. Yamaguchi and Ishimoto (ISSP, Univ. of Tokyo) Solid State NMR Profs Y. Fujii (Fukui Univ.) and T. Goto (Kyoto Univ.) Workshop on Nano-magnets at Kyoto, Dec , 2003

Syntheses of · SMMs of Ferrous Cubes: Structurally controlled magnetic anisotropy · Mixed Valence Fe clusters · Hetero-metal SMM

Single Molecule Magnets [Mn(III,IV) 12 O 12 (O 2 CR) 16 (H 2 O)](S = 10) (T. Lis, 1980) [Mn(III,IV) 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] - (S = 19/2) [Mn(III,IV) 4 O 3 X(O 2 CMe)(dbm) 3 ](S = 9/2) [Fe(III) 8 O 2 (OH) 12 (tacn) 6 ] 8+ (S = 10) [V(III) 4 O 2 (O 2 CR) 7 (L-L)] + (S = 3) D. N. Hendrickson, G. Christou, and D. Gatteschi (1993) S = 10, D = –0.46 cm -1 L. Thomas et al., Nature 1996, 383, 145 [Mn 12 O 12 (OAc) 16 (H 2 O) 4 ] [Fe II 4 (sae) 4 (MeOH) 4 ] H. Oshio et al., J. Am. Chem. Soc. 2000, 112, S = 8, D = cm -1

Syntheses of SMM EE Magnetization Direction  E = |D|S z 2  E :Energy barrier to reorientate between two possible directions of magnetizations D : Zero Field Splitting parameters Relatively high-spin ground state Negative D value

Strategy for the High-spin Molecule Ferromagnetic Interactions by LMCT interactions AGK Theory P. W. Anderson (1959), J. B. Goodenough (1958), J. Kanamori (1959) Strict orthogonality Accidental orthogonality

High-spin Cluster Orthogonal arrangements of the magnetic orbitals

Fe(II) Cube of [Fe II 4 (sae) 4 (MeOH) 4 ] triclinic P1- a = (7) Å, b = (7) Å, c = (7) Å  = (1)°,  = (1)°,  = (1), V = (1) Å 3, Z = 2 R1 = , wR2 = J. Am. Chem. Soc S = 8 (4x2)

AC measurements of [Fe II 4 (sae) 4 (MeOH) 4 ]

Relaxation in [Fe 4 (sae) 4 (MeOH) 4 ] with S =8 Ground State  =  0 exp(  E/kT)  = 1/(2  AC ) AC : Freq. of AC Field T : Temp. of max. in  ”  E = |D|S z 2 = 64|D| M s = -8M s = 8 M s = 0  E = |D|S z 2

Iron(II) cubes with S = 8 ground state SMM nonSMM nonSMM nonSMM [Fe 4 (sae) 4 (MeOH) 4 ] [Fe 4 (sap) 4 (MeOH) 4 ] [Fe 4 (3-MeO-sap) 4 (MeOH) 4 ] [Fe 4 (sapd) 4 ]

Magnetization Experiments of High-spin Ferrous Cubes g D / cm -1 [Fe 4 (sae) 4 (MeOH) 4 ] [Fe 4 (sap) 4 (MeOH) 4 ] [Fe 4 (3-MeO-sap) 4 (MeOH) 4 ] [Fe 4 (sapd) 4 ]

[Fe 4 (sae) 4 (MeOH) 4 ] Fe(1)-O(1) 1.978(2)Fe(1)-O(2) 2.094(2) Fe(1)-N(1) 2.053(2)Fe(1)-O(4) 2.078(2) Fe(1)-O(9) (18)Fe(1)-O(8) (17) [Fe 4 (sap) 4 (MeOH) 4 ]·2H 2 O Fe(1)-O(1) 2.029(2)Fe(1)-O(2) 2.045(2) Fe(1)-N(1) 2.127(2)Fe(1)-O(2)* (15) Fe(1)-O(3) (17)Fe(1)-O(2)* (14) [Fe 4 (3MeO-msap) 4 (MeOH) 4 ]·2MeOH Fe(1)-O(1) 1.991(5)Fe(1)-O(2) 2.037(4) Fe(1)-N(1) 2.104(6)Fe(1)-O(10) 2.137(4) Fe(1)-O(6) 2.238(4)Fe(1)-O(4) 2.242(5) [Fe 4 (bsap) 4 (MeOH) 4 ] Fe(1)-O(1) 2.036(3)Fe(1)-O(2) 2.056(3) Fe(1)-N(1) 2.123(3)Fe(1)-O(2)* 2.159(3) Fe(1)-O(2) 2.259(2)Fe(1)-O(3) 2.263(3) Selected coordination bond distances (Å) in the cubes Equatorially less compressed: D < 0 Equatorially compressed: D > 0 Elongated octahedron strong ligand field week ligand field

Angular Overplap Model calculations of Energy splitting of the 5 B 2g state The variable p changes the equatorial ligand field strengths. P = 0.5 week LF P = 1.0 strong LF D < 0D > 0 saesap week LFstrong LF

Sign of D Cube values sap : equatorially less compressed: D Fe < 0: Orthogonal alignments of four ions with easy axis sae : Equatorially compressed: D Fe > 0: Orthogonal alignments of four ions with hard axis

[Fe 4 (3,5-Cl 2 -sae) 4 (MeOH) 4 ]  E = 26 K D = cm -1 T B = 1.1 K

 E = 30 K D = cm -1 T B = 1.2 K [Fe 4 (5-Br-sae) 4 (MeOH) 4 ]

Summary Structurally controlled magnetic anisotropy Compounds in red are SMM. The g, C, and  values were obtained from temperature dependence of the magnetic susceptibility. D values were estimated by the analyses of magnetization data at 1.8 K, supposing the only S = 8 being populated.  E and T B values were estimated from the ac magnetic susceptibility measurements. gC [emu mol -1 K]  [K] D [cm -1 ]  E [K] T B [K] [Fe 4 (sap) 4 (MeOH) 4 ]·2H 2 O [Fe 4 (5-Br-sap) 4 (MeOH) 4 ] [Fe 4 (3-MeO-sap) 4 (MeOH) 4 ] [Fe 4 (sapd) 4 ]·4MeOH·2H 2 O [Fe 4 (sae) 4 (MeOH) 4 ] [Fe 4 (5-Br-sae) 4 (MeOH) 4 ]·MeOH [Fe 4 (3,5-Cl 2 -sae) 4 (MeOH) 4 ]

[NaFe III 6 ] New Cluster Molecules with higher nuclearity [Fe II Fe III 6 ] [Fe III 2 ] [Fe III 3 ] [Fe II 3 Fe III ] [Fe III Fe II 6 ]

Ferric wheel of [NaFe III 6 (5-MeO-sae) 6 (  2 -OMe)]ClO 4 +NaClO 4  [Fe III 3 Cl 2 (5-MeO-sae) 3 (  3 -OMe)(MeOH)] (  3 -alkoxo bridges)

[Fe II Fe III 6 (5-MeO-sae) 6 (  2 -OMe) 6 ]Cl 2 7FeCl 2 ·4H 2 O + 6H 2 (5-MeO-sae) + 2/7(t-Bu 4 N)(MnO 4 )  (  3 -alkoxo bridge) g(Fe 3+ ) = 2.0 and g(Fe 2+ ) =2.10(5) J(spoke) = -7.3 cm -1 and J(rim) = -8.7 cm -1 ? Spin frustrated system

[Fe II 6 Fe III (5-MeO-saeH) 6 (  3 -OMe) 6 ]Cl 3 7FeCl 2 ·4H 2 O + 6(5-MeO-saeH 2 ) + 1/21(t-Bu 4 N)(MnO 4 )   2 -phenoxo bridges S = 29/2 and D = cm -1 Angew.Chem

Next target molecules Air insensitive SMM Heteronuclear SMM The smallest SMM

Hetero-nuclear SMM CuCl 2 ·2H 2 O [Mn III 3 (  -O)(Br-sap) 3 (H 2 O) 3 ]Cl + MnCl 2 ·4H 2 O

[Mn III Cu II (Br-sap) 2 Cl(MeOH)] Selected Bond Distances (Å) Mn-Cl 2.616(4) Mn-O1S 2.658(9) Other bonds 1.871(5) (6) Mn 3+ : Axially elongated octahedron for d 4 MnCu

Magnetic susceptibility and magnetization data of [Mn III Cu II (Br-sap) 2 Cl(MeOH)] Ferromagnetic interactions between Mn 3+ and Cu 2+ ions S = 5/2 ground state

MO diagram of Mn 3+ -Cu 2+ system Tetragonally elongated quasi D 4h Mn 3+ Square-planar quasi D 4h d xz d yz dz2dz2 d xy d x 2 -y 2 dz2dz2 d xy d xz d yz Cu 2+ O CuMn O LMCT from O - Strickt orthogonality

Quasi-single Crystal HF-EPR OF [Mn III Cu II (Br-sap) 2 Cl(MeOH)] -5/2  -3/2 -3/2  -1/2-1/2  1/2 1/2  3/ GHz *Magnetic field is tilted 13° with respect to the principal axis. H. Nojiri (Okayama Univ.)

Plots of resonance fields (H r ) vs. the value of Ms [Mn III Cu II (Br-sap) 2 Cl(MeOH)] g = 2.04 D = cm -1 B 4 0 ’= cm -1

Yamaguchi, Ishimoto (ISSP) Single Crystal AC magnetic susceptibility [Mn III Cu II (Br-sap) 2 Cl(MeOH)]

Packing diagrams of [Mn III Cu II (Br-sap) 2 Cl(MeOH)] ac projection view bc projection view ab projection view

Magnetization data for [Mn III Cu II (Br-sap) 2 Cl(MeOH)] with S =5/2 ground state Yamaguchi, Ishimoto (ISSP) Integer SpinHalf-Integer Spin No-spin tunneling at H ext =0 X T B = 500 mK  E = 10.5 K

Summary: Nano Magnets with different sizes Mn Cu Fe [Mn III Cu II ] S = 5/2 with T B = 0.8 K 4 核 :[Fe II 4 ] S = 8 with T B = 1.1K 6 核 :[Mn III 6 ] S = 12 with T B = 1.0 K [Fe II 6 Fe III ] with S = 29/2 [Mn III 4 Mn IV 2 Cu II 8 (O) 6 ] 1.5 nm 2.0 nm 2.5 nm [Mn III 8 Mn IV 4 Cu II 8 (O) 16 ] ? Strong correlated electron oxide clusters S N Tunneling M s = S N Nano magnets M s = -8

Organizer Tadashi Sugawara (University of Tokyo) General Secretaries Hiroki Oshio (Tsukuba University) Kunio Awaga (Nagoya University) Kazuhito Hashimoto (Unrsity of Tokyo)