AMSR Bias Busting Find, Beat, Repeat, Report

Slides:



Advertisements
Similar presentations
Calibration Method of Microwave Tb for Retrieving Accurate SST Akira Shibata JAXA / EORC Advances of Satellite Oceanography at Vladivostok, Oct. 3-6, 2007.
Advertisements

F. Wentz, T. Meissner, J. Scott and K. Hilburn Remote Sensing Systems 2014 Aquarius / SAC-D Science Team Meeting November ,
Extension and application of an AMSR global land parameter data record for ecosystem studies Jinyang Du, John S. Kimball, Lucas A. Jones, Youngwook Kim,
Communicating Uncertainties for Microwave-Based ESDRs Frank J. Wentz, Carl A. Mears, and Deborah K. Smith Remote Sensing Systems, Santa Rosa CA Supported.
Aquarius Status Salinity Retrieval and Applications D. M. Le Vine NASA/GSFC, Greenbelt, MD E. P. Dinnat, G. Lagerloef, P. de Matthaeis, H. Kao, F.
The Aquarius Salinity Retrieval Algorithm Frank J. Wentz and Thomas Meissner, Remote Sensing Systems Gary S. Lagerloef, Earth and Space Research David.
All-Weather Wind Vector Measurements from Intercalibrated Active and Passive Microwave Satellite Sensors Thomas Meissner Lucrezia Ricciardulli Frank Wentz.
Passive Measurements of Rain Rate in Hurricanes Ruba A.Amarin CFRSL December 10, 2005.
Maintaining and Improving the AMSR-E and WindSat Ocean Products Frank J. Wentz Remote Sensing Systems, Santa Rosa CA AMSR TIM Agenda 4-5 September 2013.
Sea water dielectric constant, temperature and remote sensing of Sea Surface Salinity E. P. Dinnat 1,2, D. M. Le Vine 1, J. Boutin 3, X. Yin 3, 1 Cryospheric.
ATS 351 Lecture 8 Satellites
Analysis and Mitigation of Atmospheric Crosstalk Kyle Hilburn Remote Sensing Systems May 21, 2015.
MWR Algorithms (Wentz): Provide and validate wind, rain and sea ice [TBD] retrieval algorithms for MWR data Between now and launch (April 2011) 1. In-orbit.
Recent activities on utilization of microwave imager data in the JMA NWP system - Preparation for AMSR2 data assimilation - Masahiro Kazumori Japan Meteorological.
Intercalibration of AMSR-E and WindSat TB over Tropical Forest Scenes Thomas Meissner adapted by Marty Brewer for AMSR Science Team Meeting Huntsville,
Yimin Ji - Page 1 October 5, 2010 Global Precipitation Measurement (GPM) mission Precipitation Processing System (PPS) Yimin Ji NASA/GSFC,
September 4 -5, 2013Dawn Conway, AMSR-E / AMSR2 TLSCF Lead Software Engineer AMSR-E / AMSR2 Team Leader Science Computing Facility Current Science Software.
SMOS+ STORM Evolution Kick-off Meeting, 2 April 2014 SOLab work description Zabolotskikh E., Kudryavtsev V.
Evaluation of Microwave Scatterometers and Radiometers as Satellite Anemometers Frank J. Wentz, Thomas Meissner, and Deborah Smith Presented at: NOAA/NASA.
D istributed I nformation S ervices for C limate and O cean Products and V isualizations for E arth R esearch We provide multi-sensor, multi-platform highly.
APPLICATIONS OF THE INTEGRAL EQUATION MODEL IN MICROWAVE REMOTE SENSING OF LAND SURFACE PARAMETERS In Honor of Prof. Adrian K. Fung Kun-Shan Chen National.
25 June 2009 Dawn Conway, AMSR-E TLSCF Lead Software Engineer AMSR-E Team Leader Science Computing Facility.
A NON-RAINING 1DVAR RETRIEVAL FOR GMI DAVID DUNCAN JCSDA COLLOQUIUM 7/30/15.
Satellite-derived Sea Surface Temperatures Corey Farley Remote Sensing May 8, 2002.
T. Meissner, F. Wentz, J. Scott, K. Hilburn Remote Sensing Systems ESA Ocean Salinity Science and Salinity Remote Sensing Workshop November.
A New Satellite Wind Climatology from QuikSCAT, WindSat, AMSR-E and SSM/I Frank J. Wentz (presenting), Lucrezia Ricciardulli, Thomas Meissner, and Deborah.
An Intercalibrated Microwave Radiance Product for Use in Rainfall Estimation Level 1C Christian Kummerow, Wes Berg, G. Elsaesser Dept. of Atmospheric Science.
Remote Sensing Systems Climate Satellite Program Frank J. Wentz and Carl Mears Remote Sensing Systems, Santa Rosa, CA Supported in part by : NASA’s Earth.
National Polar-orbiting Operational Satellite System (NPOESS) Microwave Imager/Sounder (MIS) Capabilities Pacific METSAT Working Group Apr 09 Rebecca Hamilton,
The New Geophysical Model Function for QuikSCAT: Implementation and Validation Outline: GMF methodology GMF methodology New QSCAT wind speed and direction.
Trends & Variability of Liquid Water Clouds from Eighteen Years of Microwave Satellite Data: Initial Results 6 July 2006 Chris O’Dell & Ralf Bennartz University.
2 - 5 December, Hurricane Conference Tropical Prediction Center, Miami, FL 2009 Hurricane Conference Authors : Paul Chang, NOAA/NESDIS Jim Carswell,
Mission Operations Review February 8-10, 2010 Cordoba, ARGENTINA SECTION 16.x Aquarius Science Commissioning and Acceptance Draft 2 Prepared by: Gary Lagerloef,
T. Meissner and F. Wentz Remote Sensing Systems 2014 Aquarius / SAC-D Science Team Meeting November , 2014 Seattle. Washington,
Challenge Volume: Over 100 satellite-years of observations Calibration Each sensor has its own unique set of Sensor Calibration Problems Precision: High.
Use of AMSR-E Land Parameter Modeling and Retrievals for SMAP Algorithm Development Steven Chan Eni Njoku Joint AMSR Science Team Meeting Telluride, Colorado.
AMSR-E Vapor and Cloud Validation Atmospheric Water Vapor –In Situ Data Radiosondes –Calibration differences between different radiosonde manufactures.
The Inter-Calibration of AMSR-E with WindSat, F13 SSM/I, and F17 SSM/IS Frank J. Wentz Remote Sensing Systems 1 Presented to the AMSR-E Science Team June.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Geophysical Ocean Products from AMSR-E & WindSAT Chelle L. Gentemann, Frank Wentz, Thomas Meissner, Kyle Hilburn, Deborah Smith, and Marty Brewer
Basis of GV for Japan’s Hydro-Meteorological Process Modelling Research GPM Workshop Sep. 27 to 30, Taipei, Taiwan Toshio Koike, Tobias Graf, Mirza Cyrus.
A step toward operational use of AMSR-E horizontal polarized radiance in JMA global data assimilation system Masahiro Kazumori Numerical Prediction Division.
Recent SeaWiFS view of the forest fires over Alaska Gene Feldman, NASA GSFC, Laboratory for Hydrospheric Processes, Office for Global Carbon Studies
South Pole North Pole South Pole DD, K CONAE Microwave Radiometer (MWR) Counts to Tb Algorithm and On orbit Validation Zoubair Ghazi 1, Andrea Santos-Garcia.
SMOS Science Meeting September 2011 Arles, FR Simulating Aquarius by Resampling SMOS Gary Lagerloef, Yann Kerr & Eric Anterrieu and Initial Results.
A New Ocean Suite Algorithm for AMSR2 David I. Duncan September 16 th, 2015 AMSR Science Team Meeting Huntsville, AL.
Active and passive microwave remote sensing of precipitation at high latitudes R. Bennartz - M. Kulie - C. O’Dell (1) S. Pinori – A. Mugnai (2) (1) University.
Apr 17, 2009F. Iturbide-Sanchez A Regressed Rainfall Rate Based on TRMM Microwave Imager Data and F16 Rainfall Rate Improvement F. Iturbide-Sanchez, K.
GCOM-W1 Status Keizo Nakagawa 1, Norimasa Ito 1, Marehito Kasahara 1, and Keiji Imaoka 2 1 GCOM Project Team 2 Earth Observation Research Center (EORC)
Application of AMSR wind speed algorithm for retrieving Windsat vector wind Akira Shibata JAXA AMSR-E meeting, at Huntsville, June 2-3, 2010.
Status and plans for AMSR-E calibration Keiji Imaoka JAXA Earth Observation Research Center (EORC) X-CAL Meeting University of Central Florida, Orlando.
AMSR-E and WindSAT Version 7 Microwave SSTs C. Gentemann, F. Wentz, T. Meissner, & L.Riccardulli Remote Sensing Systems NASA SST ST October.
AQUA AMSR-E MODIS POES AVHRR TRMM TMI ENVISAT AATSR Multi-satellite, multi-sensor data fusion: global daily 9 km SSTs from MODIS, AMSR-E, and TMI
A comparison of AMSR-E and AATSR SST time-series A preliminary investigation into the effects of using cloud-cleared SST data as opposed to all-sky SST.
Passive Microwave Remote Sensing
Intercalibration of AMSR2 and PMW radiometers Takashi Maeda(JAXA/EORC), Arata Okuyama (JMA), Kazufumi Kobayashi (RESTEC), Mieko Seki (RESTEC), Keiji Imaoka.
Spaceborne Polarimetric Microwave Radiometer Brandon Ravenscroft
EXTREME WINDS AND PRECIPITATION FROM SPACE
NSIDC’s Passive Microwave Sensor Transition for Polar Data
SOLab work description
Paper under review for JGR-Atmospheres …
GPM Microwave Radiometer Vicarious Cold Calibration
Passive Microwave Radiometer Constellation for Sea Surface Temperature
Remote Sensing Systems
Calibration Activities of GCOM-W/AMSR2
Roughness Correction for Aquarius (AQ) Sea Surface Salinity (SSS) Algorithm using MicroWave Radiometer (MWR) W. Linwood Jones, Yazan Hejazin Central FL.
Extreme Wind Speed Measurements from NASA’s SMAP L-Band Radiometer
An Update on the Activities of the Precipitation Measurement Missions (i.e. TRMM/GPM) XCAL Team PMM XCAL Team Wesley Berg, Rachael Kroodsma, Faisal Alquaeid,
Frank Wentz and Carl Mears Remote Sensing Systems, Santa Rosa CA, USA
AMSR-E RFI Update - Towards RFI Adaptive Algorithms 1.0
Presentation transcript:

AMSR Bias Busting Find, Beat, Repeat, Report Marty Brewer Frank J. Wentz, Kyle Hilburn, Thomas Meissner Carl Mears, Chelle Gentemann Remote Sensing Systems, Santa Rosa CA Research Supported by NASA’s Earth Science Division AMSR Science Team Meeting Huntsville, Alabama September 22-23, 2014

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios Detecting and Evading 10.65 GHz RFI Adaptive Algorithm Wind Speeds through Rain =======================The Fold============================ Intercalibrating AMSR-2 with AMSR-E Using WindSat as a Bridge Adapted from Tokyo, January, 2014

Communication Satellite Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios Detecting and Evading 10.65 GHz RFI Adaptive Algorithm Wind Speeds through Rain =======================The Fold============================ Intercalibrating AMSR-2 with AMSR-E Using WindSat as a Bridge Adapted from Tokyo, January, 2014

Communication Satellite Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios Detecting and Evading 10.65 GHz RFI Adaptive Algorithm Wind Speeds through Rain =======================The Fold============================ Intercalibrating AMSR-2 with AMSR-E Using WindSat as a Bridge Adapted from Tokyo, January, 2014

SST in the Gulf of Mexico Linked to Drought Area in U.S. AMSR-E, WindSat, & AMSR-2 SST in the Gulf of Mexico Linked to Drought Area in U.S. “In 2010, the area of severe drought is only 3.3%, compared with the average of 19.5%. This indicates that variability in the Loop Current can have profound impacts on precipitation (and hence agriculture) in the United States.” -Hilburn

AMSR-2 RFI Mask – Implemented Jan, 2014

AMSR-2 RFI Mask – Implemented Jan, 2014 Something’s Missing

Diurnal Warming of SST in low wind speeds Yes, but… Stronger in AMSR-2 than AMSR-E? Suspicious. At Night? Preposterous!!!

Diurnal Warming of SST in low wind speeds Yes, but… Stronger in AMSR-2 than AMSR-E? Suspicious. At Night? Preposterous!!! Low winds, high SSTs: Ocean Reflected RFI

6.9GHz Space-Based Ocean-Reflected RFI Night

6.9GHz Space-Based Ocean-Reflected RFI Day

6.9GHz Space-Based Ocean-Reflected RFI Night

6.9GHz Space-Based Ocean-Reflected RFI Day

6.9GHz Space-Based Ocean-Reflected RFI Night

6.9GHz Space-Based Ocean-Reflected RFI

6.9GHz Space-Based Ocean-Reflected RFI

6.9GHz Space-Based Ocean-Reflected RFI

Reported by JAXA in AMSR-E: Globalstar satellite telephone service 52+ satellites in Low Earth Orbit (LEO) 6.825-7.075 GHz ICO 10+ satellites in Medium Earth Orbit (MEO) 6.875-7.055 GHz 6GHz RFI from space Makoto Yoshikawa, Yasuhiro Fujimoto Mitsubishi Space Software Co., Ltd. Keiji Imaoka, and Akira Shibata Japan Aerospace Exploration Agency, EORC Joint AMSR Science Team Meeting 13-15 September 2005 University of Hawaii at Manoa, Honolulu, HI

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios

6.9 10.65 18.7 23.8 36.5 SST Very Low X SST Low Res Wind Very Low Wind Low Res

AMSR-2 2014.04.25 SST 6.9

AMSR-2 2014.04.25 SST 6.9 – 10.6

AMSR-2 2014.04.25 wind 6.9 – 10.6

AMSR-E 2011.05.09 SST 6.9 – 10.6

AMSR-E 2011.05.09 SST 6.9 – 10.6

AMSR-E 2011.05.09 SST 6.9 – 10.6

AMSR-E 2011.05.09 wind 6.9 – 10.6

AMSR-E 2011.05.09 wind 6.9 – 10.6

AMSR-E 2011.05.09 wind 6.9 – 10.6

AMSR-E 2011.05.09 wind 6.9 – 10.6

AMSR-E 2011.05.09 6.9V

AMSR-E 2011.05.09 6.9V Ascension Island Negative RFI?!?!?

AMSR-E 2011.05.09 6.9V

AMSR-E 2011.05.09 6.9H

AMSR-E 2011.05.09 6.9 H/V Polarization ratio

AMSR-E 2011.05.09 10.65 H/V Polarization ratio

AMSR-E 2011.05.09 6.9 H/V - 10.65 H/V Polarization ratio difference

AMSR-E 2011.05.09 wind 6.9 – 10.6

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods – hard to beat Polarization Ratios – 7.3 GHz TBD

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods – hard to beat Polarization Ratios – 7.3 GHz TBD Detecting and Evading 10.65 GHz RFI RTM Methods Adaptive Algorithm

SST “No 10” Algorithm 6.9 10.65 18.7 23.8 36.5 SST Very Low X SST Low Res Wind Very Low Wind Low Res

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No 10” SST Low Res Wind Very Low Wind Low Res

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No 10”

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10”

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10”

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) None -0.008 6V -0.416 6H 0.239 10V 0.647 10H -0.598 18V -0.185 18H 0.133 6V and 6H -0.192 10V and 10H 0.064 18V and 18H 0.000

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) None -0.008 6V -0.416 6H 0.239 10V 0.647 10H -0.598 18V -0.185 18H 0.133 6V and 6H -0.192 10V and 10H 0.064 18V and 18H 0.000

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) 10V 0.647 10H -0.598

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) 10V 0.647 10H -0.598

RFI: 10V 10H SST “No 10” – SST ALL TB Perturbation (1K) SST ALL – SST “No 10” (K) 10V 0.647 10H -0.598

SST “No 10” – SST ALL RFI: 10V 10H

RFI: 10H SST “No 10” – SST ALL Astra Constellation One of many footprints Astra Constellation

SST “No 10” – SST ALL RFI: 10V 10H

SST “No 10” – SST ALL RFI: 10V 10H

SST “No 10” – SST ALL

SST “No 10” – SST ALL

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) None -0.008 6V -0.416 6H 0.239 10V 0.647 10H -0.598 18V -0.185 18H 0.133 6V and 6H -0.192 10V and 10H 0.064 18V and 18H 0.000

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) 18V -0.185 18H 0.133

SST “No 10” – SST ALL 6.9 10.65 18.7 23.8 36.5 SST ALL X SST “No-10” TB Perturbation (1K) SST ALL – SST “No 10” (K) 18V -0.185 18H 0.133

SST “No 10” – SST ALL TB Perturbation (1K) SST ALL – SST “No 10” (K) 18V -0.185 18H 0.133

SST “No 10” – SST ALL

WindSat: The 2 Look Advantage

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios Detecting and Evading 10.65 GHz RFI Adaptive Algorithm Wind Speeds through Rain =======================The Fold============================ Intercalibrating AMSR-2 with AMSR-E Using WindSat as a Bridge Adapted from Tokyo, January, 2014

Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios Detecting and Evading 10.65 GHz RFI Adaptive Algorithm Wind Speeds through Rain aka Wind All Weather (AW) Wind AW =======================The Fold============================ Intercalibrating AMSR-2 with AMSR-E Using WindSat as a Bridge Adapted from Tokyo, January, 2014

AMSR-E Wind AW HRD Winds (6 km) HRD winds (resampled to 50 km) AMSR-E 6.9 GHz TB H-pol AMSR-E 10.7 GHz TB H-pol AMSR-E Rain (25 km)

Hurricane Katrina, 2005-08-28T07:30Z

Arigato Gozai Mas Thank You Detecting 6.9 GHz Ocean Reflected RFI RTM Methods Polarization Ratios Detecting and Evading 10.65 GHz RFI Adaptive Algorithm Wind Speeds through Rain =======================The Fold============================ Intercalibrating AMSR-2 with AMSR-E Using WindSat as a Bridge Adapted from Tokyo, January, 2014 Thank You

Geophysical Retrievals from GCOM-W AMSR-2 Radiative Transfer Model (RTM) Inversion (RTM-1) SST, Wind, Vapor, Cloud, Rain Frank J. Wentz Marty Brewer Remote Sensing Systems, Santa Rosa CA Research Supported by NASA’s Earth Science Division

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record

RSS Inventory of Satellite Microwave Observations: AMSR-2 Needs to be Consistently Calibration into Existing Record 6:00 PM 1:30 PM ~4.5 hours (daytime)

6:00 PM 1:30 PM 6:00 AM 1:30 AM ~7.5 hours (night) ~4.5 hours (day)

6:00 PM 1:30 PM 6:00 AM 1:30 AM ~7.5 hours (night) ~4.5 hours (day)

6:00 AM ~4.5 hours (night) 1:30 AM

Geophysical Retrievals from GCOM-W AMSR-2 Radiative Transfer Model (RTM) Inversion (RTM-1) SST, Wind, Vapor, Cloud, Rain Chelle Gentemann Frank J. Wentz, Kyle Hilburn Marty Brewer Remote Sensing Systems, Santa Rosa CA

Radiative Transfer Model (RTM) Inversion (RTM-1) SST, Wind, Vapor, Cloud, Rain

Radiative Transfer Model (RTM) Inversion (RTM-1) SST, Wind, Vapor, Cloud, Rain

Radiative Transfer Model (RTM) Inversion (RTM-1) SST Wind Speed Rain Rate Water Vapor Cloud Liquid

SST Wind Speed Rain Rate Water Vapor Cloud Liquid

SST Wind Speed Rain Rate Water Vapor Cloud Liquid

SST Wind Speed Rain Rate Rain Free Scenes Water Vapor Cloud Liquid

SST Wind Speed Rain Rate Rain Free Scenes Water Vapor Cloud Liquid

W T V L

WindSat W T V L

TA WindSat W T TB V L

TB TA WindSat W T TB V L

TB TA WindSat RTM-1 T,W,V,L W T TB V L

T W V L TB T,W,V,L TA RTM-1 TB WindSat Adjust: Frequency, Incidence Angle T,W,V,L W T TB V L

T W V L TB T,W,V,L TA RTM-1 TB AMSR-2 WindSat Adjust: Frequency, Incidence Angle T,W,V,L W T TB V L

T W V L TB T,W,V,L TA RTM-1 RTM TB TB Simulated AMSR-2 AMSR-2 WindSat Adjust: Frequency, Incidence Angle T,W,V,L W T TB V L

T W V L TB T,W,V,L TA RTM-1 RTM TB TB + 4.5 hours Simulated AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB + 4.5 hours Simulated AMSR-2 TB TA TA AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Compare: ‘Observed’ to ‘Simulated’ Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Compare: ‘Observed’ to ‘Simulated’ Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB T,W,V,L V L

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB T,W,V,L V L Tune: Vapor, Cloud

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB T,W,V,L V L Tune: Vapor, Cloud

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours TB Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours TB T,W,V,L RTM W TB T TB T,W,V,L V L Tune: Vapor, Cloud

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours TB Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours TB T,W,V,L RTM W TB T TB T,W,V,L V L Tune: Vapor, Cloud

Do ALL channels “tune” together? TB Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Do ALL channels “tune” together? Adjust: Frequency, Incidence Angle + 4.5 hours TB T,W,V,L RTM W TB T TB T,W,V,L V L Tune: Vapor, Cloud

T W V L TB TB T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Simulated Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours T,W,V,L W TB T TB V L

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB + 4.5 hours Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours RTM-1 T,W,V,L W TB T TB T,W,V,L V L

T W V L TB TB T,W,V,L T,W,V,L TA RTM-1 RTM TA TB TB TB TB + 4.5 hours Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover TB TB AMSR-2 WindSat RTM-1 RTM Adjust: Frequency, Incidence Angle + 4.5 hours RTM-1 RTM T,W,V,L W TB T TB T,W,V,L V L

T W V L TB TB = T,W,V,L T,W,V,L TA ? RTM-1 RTM TA TB TB TB TB Find best fit: Simulated AMSR-2 TB NL, HL, spillover TA TA NL, HL, spillover = TB TB AMSR-2 WindSat ? RTM-1 RTM Closure Adjust: Frequency, Incidence Angle + 4.5 hours RTM-1 RTM T,W,V,L W TB T TB T,W,V,L V L

RTM Calibration Methodology Ocean Radiative Transfer Model (RTM) is Calibration Reference for all MW Radiometers 0.2 K absolute (TBD), and 0.1 K relative Meissner and Wentz (2012): IGARSS Paper of the Year Award Publicly available Inputs for RTM are the WindSat Retrievals of SST, Wind, Vapor, and Cloud (Rain excluded) WindSat is highly stable Observation period from 2003 to present Overlaps both AMSR-E and AMSR-2 and hence serves as a Calibration Bridge Ocean retrievals have been thoroughly validated Co-location window (6:00 AM -> (~4.5 hours ) -> 1:30 AM) 1:30 PM <-> 6:00 PM not used (large diurnal variability) RTM[ T,W,V,L from WindSat ]  Simulated AMSR-2 Brightness Temperatures Amazon Forest calibration needed because of Receiver Non-Linearity.

Calibration Model RTM Brightness Temperature TB (k) Calibration Parameters Non-Linear coefs: a1-5 Hot Load Offset Antenna Spillover δ Cross-Pol NOT adjusted 3 80 250 280 Cold Space Range of Ocean Values Amazon Forest AMSR2 Antenna Temperature TA (K)

Hot Load Offset and Antenna Spillover Adjustments Hot Load Temperature Offset: -1.3 K Adjustments to the antenna spillover value has the same effect as adding an offset to the hot load temperature. A single hot load offset for all channels is found that minimizes the required changes to the spillover values. The adjustment for AMSR2 is to subtract 1.3 K from the temperature reported by the hot load thermistors. This adjustment is consistent with the -1.0 K offset found for previous radiometers Spillover Adjustments (290 K times fractional spillover value)

Non-Linear Correction: Red Curves are JAXA Non-Linear Correction ( Marehito Kasahara 21 Feb 2013 X-Cal presentation) Black Curves are values coming from RSS analysis.

Brightness Temperature (TB) Validation/Evaluation of Calibration In-Situ comparisons not available, so use a variety of methods, including, but not limited to… Amazon Canopy (~ land temperatures) - compare monthly/yearly averages: AMSR-2 TB <-> TB WindSat, SSMIs Ocean Comparisons 1. Observed AMSR-2 – AMSR-2 Predicted by WindSat: Measured AMSR-2 TB (NL, HL, δ) <-> Simulated AMSR-2 TB (RTM(WSAT(T,W,V,L))) Look at Mission Plots for V, H: - before vapor+cloud adjustment - after vapor+cloud adjustment - zoom in, look for systematic errors 2. Observed AMSR-2 – AMSR-2 Predicted by AMSR-2: Measured AMSR-2 TB (NL, HL, δ) <-> Simulated AMSR-2 TB (RTM(AMSR-2(T,W,V,L))) aka “Closure Analysis” Look at Earth Gridded mission averages: - ascending - descending minus ascending

Amazon Forest Calibration Before Adjusting Hot-Load Temperature, APC, and Non-Linear Correction AMSR-2 WSAT AMSR-2 WSAT Black diamonds are WindSat. Red diamonds are AMSR-E. Green diamonds are AMSR-2. Colored squares are the 6 SSM/Is Same months used for averages, but averaging years are different.

Amazon Forest Calibration After Adjusting Hot-Load Temperature, APC, and Non-Linear Correction AMSR-2 WSAT AMSR-2 WSAT Black diamonds are WindSat. Red diamonds are AMSR-E. Green diamonds are AMSR-2. Colored squares are the 6 SSM/Is Same months used for averages, but averaging years are different.

AMSR-2 TB Minus RTM(WindSat T,W,V,C) TB Over Ocean Before Vapor/Cloud Adjustment 6V 7V 11V 19V 24V 37V 89aV 89bV

AMSR-2 TB Minus RTM(WindSat T,W,V,C) TB Over Ocean After Vapor/Cloud Adjustment 6V 7V 11V 19V 24V 37V 89aV 89bV

AMSR-2 TB Minus RTM(WindSat T,W,V,C) TB Over Ocean After Vapor/Cloud Adjustment 6V 7V 11V 19V 24V 37V 89aV 89bV

AMSR-2 TB Minus RTM(WindSat T,W,V,C) TB Over Ocean Before Vapor/Cloud Adjustment 6H 7H 11H 19H 24H 37H 89aH 89bH

AMSR-2 TB Minus RTM(WindSat T,W,V,C) TB Over Ocean After Vapor/Cloud Adjustment 6H 7H 11H 19H 24H 37H 89aH 89bH

AMSR-2 TB Minus RTM(WindSat T,W,V,C) TB Over Ocean After Vapor/Cloud Adjustment 6H 7H 11H 19H 24H 37H 89aH 89bH

AMSR-2 TB minus RTM with AMSR-2 Ocean Retrievals Closure Analysis: AMSR-2 TB minus RTM with AMSR-2 Ocean Retrievals Each image shows a separate channel. All 16 channels are shown. Only Ascending Orbit Segments

AMSR-2 TB minus RTM with AMSR-2 Ocean Retrievals Closure Analysis: AMSR-2 TB minus RTM with AMSR-2 Ocean Retrievals Each image shows a separate channel. All 16 channels are shown. Descending Minus Ascending Orbit Segments

Summary Most calibration issues for AMSR-2 are typical for satellite microwave radiometers Receiver non-linearity is a bit unusual and needs to be better understood First Round of TB Calibration is completed Ocean Products have been Validate with other satellite retrievals and buoys Ocean Products have been available for download at www.remss.com since February, 2014 ftp://ftp.remss.com/amsr2 RFI Continues to be worrisome but Adaptive Mitigation Strategies are being employed

Arigato Gozai Mas Thank You Geophysical Retrievals from GCOM-W AMSR-2 Radiative Transfer Model (RTM) Inversion (RTM-1) SST, Wind, Vapor, Cloud, Rain Chelle Gentemann Frank J. Wentz, Kyle Hilburn Marty Brewer Remote Sensing Systems, Santa Rosa CA Research Supported by NASA’s Earth Science Division Joint PI Workshop Global Environment Observation Mission 2013 Earth Observation Research Center, JAXA TKP Gardencity Takebashi, Tokyo JAPAN January 17, 2014