Visual Cryptography for Gray-Level Images by Dithering Techniques Author:Chang-Chou Lin, Wen-Hsiang Tsai Source:Pattern Recognition Letters 24 (2003) 349-358 Speaker:Shu-Fen Chiou(邱淑芬)
Outline Introduction Space-filling Curve Ordered Dithering (SFCOD) (k, n)-threshold visual encryption of gray-level images Experimental results Conclusions Comments
Introduction (1/2) Input a gray-level image Share image1 Transform by SFCOD decode encode Apply (2, 2) visual cryptography The decoded image An approximate binary image Share image2
Introduction (2/2) Binary images are usually restricted to represent text-like messages. Verheul and van Tilborg (1997) first tried to extend visual cryptography into gray-level images, but their method has the disadvantage of size increase in the decoded image.
Space-filling Curve Ordered Dithering (SFCOD) Yuefeng Zhang Comput. & Graphics, Vol. 22 No.4, pp. 559-563, 1998
Hilbert curve Rule Iteration = 0 Iteration = 1 Iteration = 2
Subdividing a 88 image into 4 4 regions by using a Hilbert curve 7 7 7 10 1 2 3 4 7 6 5 8 9 11 12 15 13 14 48 51 52 53 49 50 55 54 62 61 56 57 63 60 59 58 42 41 38 37 43 40 39 36 44 45 34 35 47 46 33 32 26 25 22 21 27 24 23 20 28 29 18 19 31 30 17 16 5 6 9 10 5 6 9 10 6 6 6 4 7 8 11 4 7 8 11 5 5 5 3 2 13 12 3 2 13 12 4 4 4 1 14 15 1 14 15 3 3 3 15 12 11 10 5 4 3 2 2 2 14 13 8 9 6 7 2 1 1 1 1 1 2 7 6 9 8 13 14 3 4 5 10 11 12 15 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Dithering Technique (1/3) PROCEDURE SFCOD (M, B, t ,I ,H) BEGIN FOR i = 0 TO m – 1 DO FOR j = 0 TO m – 1 DO IF I (i, j) /256 ≥ (B (M (i, j) MOD t )+0.5)/ t THEN H (i, j) = 1(白色) ELSE H (i, j) = 0 ;(黑色) END 定義 I:大小為m*m的灰階影像 M(i, j):traversal-order number B:space-filling curve dither array t:array length H(i, j):轉 binary image 後的 pixel value
Dithering Technique (2/3) Step1: Gray-level image I with mm. Step2: Divide I into many pixels of a block. Step3: Transform each gray block into binary block M(0,0) I(0,0) 1 2 3 4 5 6 7 10 8 9 11 12 15 13 14 48 51 52 53 49 50 55 54 62 61 56 57 63 60 59 58 42 41 38 37 43 40 39 36 44 45 34 35 47 46 33 32 26 25 22 21 27 24 23 20 28 29 18 19 31 30 17 16 Original Image I Hilbert curve order t=4, t<=M
Dithering Technique (3/3) Space-filling curve dither array B, size(B)=t 作用在於打亂, B 對於每一個block 可以Fixed or not fixed t=4 B(0)=1, B(1)=0, B(2)=2, B(3)=3
Example of Dithering Technique Step1: y=I(0,0)/256=100/256=0.390625 Step2: x=M(i, j) mod t = M(0, 0) mod 4= 21 mod 4=1 Step3: B(x)=B(1)=0 B(0)=1, B(1)=0, B(2)=2, B(3)=3 Step4: q= (B(x)+0.5) / t =(0+0.5)/4=0.125 Step5: Test (y >= q) ? If yes, white color else black color.
(k, n)-threshold visual encryption of gray-level images Verheul and van Tilborg, 1997 We describe an example for the case of a (3, 3)-threshold scheme. If there are 3 gray levels original image.
An example (1/4) Gray-level 0 Gray-level 1 Gray-level 2 original image
An example (2/4) share1 share2 share3 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 share1 A0 = share2 share3 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2 2 0 1 0 1 2 1 2 0 A1 = 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 0 1 2 A2 =
An example (3/4) C0 = { all the matrices obtained by permuting the columns of A0 } C1 = { all the matrices obtained by permuting the columns of A1 } C2 = { all the matrices obtained by permuting the columns of A2 } EX: 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 A0 = 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2 2 0 1 0 1 2 1 2 0 A1 = 0 0 0 1 1 1 2 2 2 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 0 1 2 original image share1 share2 share3 result A2 =
An example (4/4) (k, n)-threshold visual cryptography k = 3, n = 3 share1 share2 share3 (k, n)-threshold visual cryptography k = 3, n = 3 size increase ck-1 at least when c ≥ n Decoding image
Experimental results (1/2) The original image with 16 gray levels The image after using SFCOD
Experimental results (2/2) share1 + The decoded image share2
A person authentication application Public key Secret key authentication Encrypting a portrait of the user
Conclusions This scheme possesses the advantages of inheriting any developed cryptographic technique for binary images and having less increase of image size in ordinary situations. EX: If there are 3 gray levels original image before this scheme 33-1 = 9 times 4 times
Comments 可以直接用灰階影像或是彩色影像來做視覺密碼學。 還原的影像可以和原始影像的尺寸大小一樣。