Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 B+-Tree Index Chapter 10 Modified by Donghui Zhang Nov 9, 2005.

Slides:



Advertisements
Similar presentations
B+-Trees and Hashing Techniques for Storage and Index Structures
Advertisements

Database Management Systems, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes Chapter 9.
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 18 Indexing Structures for Files.
B+-Trees (PART 1) What is a B+ tree? Why B+ trees? Searching a B+ tree
1 Tree-Structured Indexes Module 4, Lecture 4. 2 Introduction As for any index, 3 alternatives for data entries k* : 1. Data record with key value k 2.
B+-trees. Model of Computation Data stored on disk(s) Minimum transfer unit: a page = b bytes or B records (or block) N records -> N/B = n pages I/O complexity:
Multilevel Indexing and B+ Trees
ICS 421 Spring 2010 Indexing (1) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 02/18/20101Lipyeow Lim.
CS4432: Database Systems II
CS CS4432: Database Systems II Basic indexing.
B+-tree and Hashing.
Tree-Structured Indexes Lecture 5 R & G Chapter 9 “If I had eight hours to chop down a tree, I'd spend six sharpening my ax.” Abraham Lincoln.
Tree-Structured Indexes Lecture 17 R & G Chapter 9 “If I had eight hours to chop down a tree, I'd spend six sharpening my ax.” Abraham Lincoln.
Tree-Structured Indexes. Introduction v As for any index, 3 alternatives for data entries k* : À Data record with key value k Á Â v Choice is orthogonal.
1 Tree-Structured Indexes Yanlei Diao UMass Amherst Feb 20, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
1 Tree-Structured Indexes Chapter Introduction  As for any index, 3 alternatives for data entries k* :  Data record with key value k   Choice.
Tree-Structured Indexes Lecture 5 R & G Chapter 10 “If I had eight hours to chop down a tree, I'd spend six sharpening my ax.” Abraham Lincoln.
1 B+ Trees. 2 Tree-Structured Indices v Tree-structured indexing techniques support both range searches and equality searches. v ISAM : static structure;
CS4432: Database Systems II
B+ Review. B+ Tree: Most Widely Used Index Insert/delete at log F N cost; keep tree height- balanced. (F = fanout, N = # leaf pages) Minimum 50% occupancy.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes Chapter 9.
Tree-Structured Indexes. Range Searches ``Find all students with gpa > 3.0’’ –If data is in sorted file, do binary search to find first such student,
Introduction to Database Systems1 B+-Trees Storage Technology: Topic 5.
 B+ Tree Definition  B+ Tree Properties  B+ Tree Searching  B+ Tree Insertion  B+ Tree Deletion.
Adapted from Mike Franklin
1.1 CS220 Database Systems Tree Based Indexing: B+-tree Slides courtesy G. Kollios Boston University via UC Berkeley.
Tree-Structured Indexes Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Tree- and Hash-Structured Indexes Selected Sections of Chapters 10 & 11.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes Chapter 9.
1 Indexing. 2 Motivation Sells(bar,beer,price )Bars(bar,addr ) Joe’sBud2.50Joe’sMaple St. Joe’sMiller2.75Sue’sRiver Rd. Sue’sBud2.50 Sue’sCoors3.00 Query:
B+ Tree Index tuning--. overview B + -Tree Scalability Typical order: 100. Typical fill-factor: 67%. –average fanout = 133 Typical capacities (root at.
1 Database Systems ( 資料庫系統 ) November 1, 2004 Lecture #8 By Hao-hua Chu ( 朱浩華 )
Storage and Indexing. How do we store efficiently large amounts of data? The appropriate storage depends on what kind of accesses we expect to have to.
CPSC 404, Laks V.S. Lakshmanan1 Tree-Structured Indexes (Brass Tacks) Chapter 10 Ramakrishnan and Gehrke (Sections )
Data on External Storage – File Organization and Indexing – Cluster Indexes - Primary and Secondary Indexes – Index data Structures – Hash Based Indexing.
1 Tree-Structured Indexes Chapter Introduction  As for any index, 3 alternatives for data entries k* :  Data record with key value k   Choice.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes Content based on Chapter 10 Database Management Systems, (3 rd.
I/O Cost Model, Tree Indexes CS634 Lecture 5, Feb 12, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Tree-Structured Indexes Chapter 10
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes Chapter 10.
Tree-Structured Indexes R & G Chapter 10 “If I had eight hours to chop down a tree, I'd spend six sharpening my ax.” Abraham Lincoln.
Tree-Structured Indexes. Introduction As for any index, 3 alternatives for data entries k*: – Data record with key value k –  Choice is orthogonal to.
Multilevel Indexing and B+ Trees
Multilevel Indexing and B+ Trees
Tree-Structured Indexes
Tree-Structured Indexes
COP Introduction to Database Structures
Tree-Structured Indexes (Brass Tacks)
B+-Trees and Static Hashing
Tree-Structured Indexes
CS222/CS122C: Principles of Data Management Notes #07 B+ Trees
Introduction to Database Systems Tree Based Indexing: B+-tree
Tree-Structured Indexes
Tree-Structured Indexes
B+Trees The slides for this text are organized into chapters. This lecture covers Chapter 9. Chapter 1: Introduction to Database Systems Chapter 2: The.
Tree-Structured Indexes
Adapted from Mike Franklin
Tree-Structured Indexes
Indexing 1.
Database Systems (資料庫系統)
Database Systems (資料庫系統)
General External Merge Sort
Tree-Structured Indexes
Tree-Structured Indexes
Tree-Structured Indexes
Tree-Structured Indexes
Tree-Structured Indexes
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #06 B+ trees Instructor: Chen Li.
CS222P: Principles of Data Management UCI, Fall Notes #06 B+ trees
Presentation transcript:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 B+-Tree Index Chapter 10 Modified by Donghui Zhang Nov 9, 2005

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke2 Motivation  Suppose every disk page holds 133 records.  You are given = 0.3 billion records. They occupy = 2.3 million disk pages.  You can utilize a small memory buffer of 134 pages.  You can build an index structure.  Given the key of a record, what is the minimum guaranteed number of disk I/Os to find the record?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke3 Content  B+-tree index  Structure  Search  Insert  Delete  Bulk-loading a B+-tree

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke4 B+ Tree Structure  Insert/delete at log F N cost; keep tree height- balanced. (F = fanout, N = # leaf pages)  Minimum 50% occupancy (except for root). Each node contains d <= m <= 2 d entries. The parameter d is called the order of the tree.  Supports equality and range-searches efficiently. Index Entries Data Entries ("Sequence set") (Direct search)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke5 B+ Tree Equality Search  Search begins at root, and key comparisons direct it to a leaf.  Search for 15*… * Based on the search for 15*, we know it is not in the tree! Root * 3*5* 7*14*16* 19*20*22*24*27* 29*33*34* 38* 39* 13

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke6 B+ Tree Range Search  Search all records whose ages are in [15,28].  Equality search 15*.  Follow sibling pointers. Root * 3*5* 7*14*16* 19*20*22*24*27* 29*33*34* 38* 39* 13

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke7 B+ Trees in Practice  Typical order: 100. Typical fill-factor: 67%.  average fanout = 133  Can often hold top levels in buffer pool:  Level 1 = 1 page = 8 KB  Level 2 = 133 pages = 1 MB  Level 3 = 17,689 pages = 145 MB  Level 4 = 2,352,637 pages = 19 GB  With 1 MB buffer, can locate one record in 19 GB (or 0.3 billion records) in two I/Os!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke8 Inserting a Data Entry into a B+ Tree  Find correct leaf L.  Put data entry onto L.  If L has enough space, done !  Else, must split L (into L and a new node L2) Redistribute entries evenly, copy up middle key. Insert index entry pointing to L2 into parent of L.  This can happen recursively  To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)  Splits “grow” tree; root split increases height.  Tree growth: gets wider or one level taller at top.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke9 Inserting 8* into Example B+ Tree  Find leaf, in the same way as the Search algorithm.  Handle overflow by splitting. Root * 3*5* 7*14*16* 19*20*22*24*27* 29*33*34* 38* 39* 13

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke10 Inserting 8* into Example B+ Tree  Observe how minimum occupancy is guaranteed in both leaf and index pg splits.  Note difference between copy- up and push-up ; be sure you understand the reasons for this. 2* 3*5* 7* 8* 5 Entry to be inserted in parent node. (Note that 5 is continues to appear in the leaf.) s copied up and appears once in the index. Contrast Entry to be inserted in parent node. (Note that 17 is pushed up and only this with a leaf split.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke11 Example B+ Tree After Inserting 8*  Notice that root was split, leading to increase in height.  In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice. 2*3* Root *16* 19*20*22*24*27* 29*33*34* 38* 39* 135 7*5*8*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke12 Deleting a Data Entry from a B+ Tree  Start at root, find leaf L where entry belongs.  Remove the entry.  If L is at least half-full, done!  If L has only d-1 entries, Try to re-distribute, borrowing from sibling (adjacent node with same parent as L). If re-distribution fails, merge L and sibling.  If merge occurred, must delete entry (pointing to L or sibling) from parent of L.  Merge could propagate to root, decreasing height.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke13 Deleting 19* and 20* 2*3* Root *16* 19*20*22*24*27* 29*33*34* 38* 39* 135 7*5*8*  Deleting 19* is easy.  Deleting 20* is done with re-distribution.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke14 After Deleting 19* and 20*  Notice, in re-distribution, how middle key is copied up.  If delete 24*… 2*3* Root *16* 33*34* 38* 39* 135 7*5*8*22*24* 27 27*29*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke15... And Then Deleting 24*  Must merge.  Observe ` toss ’ of index entry (on right), and ` pull down ’ of index entry (below) *27* 29*33*34* 38* 39* 2* 3* 7* 14*16* 22* 27* 29* 33*34* 38* 39* 5*8* Root

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke16 Example of Non-leaf Re-distribution  Tree is shown below during deletion of 24*.  In contrast to previous example, can re-distribute entry from left child of root to right child. Root *16* 17*18* 20*33*34* 38* 39* 22*27*29*21* 7*5*8* 3*2*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke17 After Re-distribution  Intuitively, entries are re-distributed by ` pushing through ’ the splitting entry in the parent node.  It suffices to re-distribute index entry with key 20; we’ve re-distributed 17 as well for illustration. 14*16* 33*34* 38* 39* 22*27*29* 17*18* 20*21* 7*5*8* 2*3* Root

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke18 Bulk Loading of a B+ Tree  If we have a large collection of records, and we want to create a B+ tree on some field, doing so by repeatedly inserting records is very slow.  Bulk Loading can be done much more efficiently.  Initialization : Sort all data entries, insert pointer to first (leaf) page in a new (root) page. 3* 4* 6*9*10*11*12*13* 20*22* 23*31* 35* 36*38*41*44* Sorted pages of data entries; not yet in B+ tree Root

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke19 Bulk Loading (Contd.)  Index entries for leaf pages always entered into right- most index page just above leaf level.  Assume pages in the rightmost path to have double page size.  Split when double plus one. 3* 4* 6*9*10*11*12*13* 20*22* 23*31* 35* 36*38*41*44* Root Data entry pages not yet in B+ tree 6 3* 4* 6*9*10*11*12*13* 20*22* 23*31* 35* 36*38*41*44* 6 Root not yet in B+ tree Data entry pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke20 Summary of Bulk Loading  Option 1: multiple inserts.  Slow.  Does not give sequential storage of leaves.  Option 2: Bulk Loading  Has advantages for concurrency control.  Fewer I/Os during build.  Leaves will be stored sequentially (and linked, of course).  Can control “fill factor” on pages.