Rheophysics of athermal granular materials P. Mills, J.-N. Roux & F. Chevoir Assembly of non brownian hard particles (d>>1 mm) - Dry granular materials - Dense suspensions of particles in a viscous fluid IMA Conference on Dense Granular Flows Cambridge - July 2013
Homogeneous shear state Jammed state * = critical state Shear stress Pressure P diameter d mass density rp liquid viscosity hl friction coefficient mg Shear rate Solid fraction f Jammed state * = critical state 2/11
Dimensionless numbers Two time scales : shear time and inertial / viscous time Dry grains Inertial number Dense suspensions « Viscous number » 3/11
Dry grains Suspensions Is Is Peyneau 2008 2D Peyneau 2008 2D mg =0,3 Is Is exp : Boyer et al. 2011 Khamseh 2012 3D 4/11
Relaxation from shear state to jammed state characteristic time t cutting off the shear stress while maintaining the normal stress 5/11
Time evolution of solid fraction dissipative interactions Diffusive flux dissipative interactions Relaxation Steady state : Equation of state 6/11
Relaxation time m f Da Cruz PRE 05 7/11
Constitutive law : scaling laws ? Depend on I range ! Dry grains Suspensions mg a b Ref 2D 0,67 0,52 Peyneau 08 3D 0,39 0,42 0,38 Khamseh 12 0,3 0,87 0,81 0,95 0,86 mg a b Ref 2D 0,3 0,4 – 0,5 (hmin) 0,4 – 0,2 Peyneau 08 3D 0,6 (hmax) 0 0,5 Boyer 11 Influence of dimension ? Influence of friction ! a close to b ? 8/11
Consequence for shear stress 9/11
Dry grains Dense suspensions 10/11
Conclusions = Questions Scaling laws for m and f ? Relaxation of solid fraction related to viscosity ? Microscopic interpretation of : - equation of state : Boltzmann equation ? - viscous shear stress ? - strong influence of friction ?