Structures and Internal Dynamics of H 2 S ICF 3 and H 2 O ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium on Molecular Spectroscopy, Ohio State University, Engineering and Physical Sciences Research Council
Introduction Perfluoroiodoalkanes are a fundamental building block in crystal engineering that exploits halogen bonding. 1 Key intermediates in synthesis of fluoropolymers such as fluorinated elastomers. Provides an opportunity to quantify differences between halogen bonds to the iodine atoms of ICl and ICF 3. CF 3 I and complexes containing this molecule are excellent targets for study by broadband rotational spectroscopy because of extensive nuclear quadrupole coupling and relatively intense transitions. Our group 2,3 has recently studied H 3 N ICF 3, (CH 3 ) 3 N ICF 3, OC ICF 3, Kr ICF 3 and characterised these in series of publications. 1. P. Metrangolo, Y. Carcenac, M. Lahtinen, T. Pilati, K. Rissanen, A. Vij and G. Resnati, Science, (2009) 2. S.L. Stephens, N.R. Walker and A.C. Legon, Phys. Chem. Chem. Phys (2011) 3. S.L. Stephens, N.R. Walker and A.C. Legon, J. Chem. Phys (2011)
Power divider SPST switch Mixer Low noise amplifier Pin diode limiter Adjustable attenuator 300 W Power amplifier AWG ( GHz) Oscilloscope (0-12 GHz) 10 MHz reference frequency PDRO (19.00 GHz) GHz GHz 12.2 GHz Low-pass band filter CP-FTMW Spectrometer
H 2 S ICF 3 Spectrum assigned using Hamiltonian of a symmetric top molecule. Exp. Sim. H 2 S ICF 3 B 0 / MHz (81) D J / kHz (26) D JK / kHz2.7250(47) aa (I) / MHz (11) N 243 / kHz nozzle pulses. ~ 9 hours of averaging.
H 2 O C 6 H 6 S. Suzuki, P.G. Green, R.E. Bumgarner, S. Dasgupta, W.A. Goddard III and G.A. Blake, Science, 257, (1992) H 2 O CF 4 W. Caminati, A. Maris, A. Dell-Erba and P.G. Favero, Angew. Chem. Int. Ed. 45, 6711 (2006) H 2 O CF 3 Cl L. Evangelisti, G. Feng, P. Écija, E.J. Cocinero, F. Castaño and W. Caminati, Angew. Chem. Int. Ed. 50, 7807 (2011) H 2 O CF 3 Cl Internal Dynamics in Complexes of H 2 O and H 2 S
H 2 S ICF 3 HDS ICF 3 D 2 S ICF 3 B 0 / MHz (81) (84) (9) D J / kHz (26) (27) (27) D JK / kHz (47)4.2139(59) (58) aa (I) /MHz (11) (12) (25) N / kHz H 2 S ICF 3 rISrIS r I S = (2) Å = 93.2(1)
Frequency / MHz * * * * * * * H 2 O ICF 3 Simulation (symmetric only) Exp nozzle pulses. ~ 10 hours of averaging.
Frequency / MHz Simulation (symmetric only) Simulation (asymmetric only) Exp. H 2 O ICF 3
H 2 16 O ICF 3 H 2 18 O ICF 3 m=0 m= 1 (K=1,2) m=0 m= 1 (K=0,1) B 0 / MHz (19) (41) (30) (34) D J / kHz (13) (38) (20)0.1029(22) D JK / kHz 1.921(16)8.517(68)1.840(24)23.59(24) aa (I) / MHz (84) (17) (16) (23) N / kHz HDO ICF 3 D 2 O ICF 3 m=0 B 0 / MHz (14) (16) D J / 10 4 kHz (9)0.1334(10) D JK / 10 4 kHz 2.071(11)1.937(13) aa (I) / MHz (49) (50) N / kHz Symmetric top fits Many lines fit. D J, aa (I) are consistent. D JK is not.
Asymmetric top fits H 2 16 O ICF 3 D 2 16 O ICF 3 H 2 18 O ICF 3 K=0,1 K=1 / MHz (43) (20) (27) (B 0 C 0 ) / MHz (58) (33) (34) J / kHz (44)0.1336(12)0.1352(18) JK / kHz 11.36(26) 61.71(12) aa (I) /MHz (19) (12) (21) bb (I) cc (I) / MHz 20.05(48) 20.20(33) 20.43(44) N / kHz rIOrIO Sym. r I O = 3.041(1) Å = 33.8(11) Asym. r I O = 3.040(3) Å = 32(3)
CF 3 I C 2 H Frequency / MHz Frequency / MHz ,10 11 1, ,9 11 1, ,13 12 1, ,12 12 1,11 J J = 10 11 J J = 12 nozzle pulses. ~ 9 hours of averaging.
Acknowledgements University of Bristol Susanna Stephens Anthony C. Legon Financial Support Engineering and Physical Sciences Research Council Publication S.L. Stephens, N.R. Walker and A.C. Legon, Phys. Chem. Chem. Phys., (2011)