Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.

Slides:



Advertisements
Similar presentations
H 2 CuF An overview of H 2 MX complexes G.S. Grubbs II, D.J. Frohman, Z. Yu, S.E. Novick TH13, Columbus 2013 Inorg. Chem. 52, (2013).
Advertisements

1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
AUSTIN L. MCJUNKINS, K. MICHELLE THOMAS, APRIL RUTHVEN, AND GORDON G. BROWN Department of Science and Mathematics, Coker College, 300 E College Ave., Hartsville,
Broadband Rotational Spectrum and Molecular Geometry of OC  AgI Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
New Applications of Broadband Rotational Spectroscopy Wednesday 18 th April 2012 ERC Starting Grant Presentation Nicholas R. Walker (Left) The CP-FTMW.
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
CP-FTMW Spectroscopy of Metal-containing Complexes Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon Max-Planck Advanced Study Group at the Center.
Paul Raston, Donald Kelloway, and Wolfgang Jäger Department of Chemistry, University of Alberta, Canada the OSU symposium, 2012 Infrared spectroscopy of.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Waveguide Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrum of Allyl Chloride Erin B. Kent, Morgan N. McCabe, Maria A. Phillips, Brittany P.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Microwaves are not just for Cooking! Nicholas R. Walker University of Bristol by 1 30 th January,
Two-Dimensional Chirped-Pulse Fourier Transform Microwave Spectroscopy Amanda Shirar June 22, th OSU International Symposium on Molecular Spectroscopy.
Kelly Hotopp June 22, 2010 Purdue University.  Demonstration of 2D CP-FTMW spectroscopy ◦ Non-Selective Excitation ◦ Selective Excitation  2D CP-FTMW.
Nicholas R. Walker, Susanna L. Stephens, David P. Tew and Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University,
CALIFORNIA INSTITUTE OF TECHNOLOGY 68th International Symposium on Molecular Spectroscopy - June 19, 2013 A LOW-COST CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Daniel P. Zaleski, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Evidence.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
+ MILLIMETER-WAVE SPECTROSCOPY OF ETHYLMERCURY HYDRIDE Manuel Goubet, Roman A. Motiyenko, Laurent Margulès Laboratoire PhLAM, Université Lille 1 Jean-Claude.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU RC10 Gas phase measurements and calculations of HCl and Ferrocene Adam Daly and Stephen Kukolich Chemistry Department University of Arizona.
Microwave Spectra and Structure of CF 3 I···PH 3 by chirped-pulse spectroscopy in context of the CF 3 I···B and ClI···B series Susanna L. Stephens, Nick.
Daniel P. Zaleski and Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. David P. Tew and Anthony.
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
Susanna L. Stephens, John Mullaney, Matt Sprawling Daniel P. Zaleski, Nick R. Walker, Antony C. Legon 69 th International Symposium on Molecular Spectroscopy,
Microwave Spectroscopy Wave length ~ 1 cm to 100  m Wave number ~ 1 to 100 cm -1. Frequency ~ 3 x to 3 x Hz Energy ~ 10 to 1000 Joules/mole.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Fast Sweeping Direct Absorption (sub)Millimeter Spectroscopy Based on Chirped Pulse Technology Brian Hays 1, Steve Shipman 2, Susanna Widicus Weaver 1.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 S-AgCl Nicholas R. Walker, David Wheatley, Anthony C. Legon 64 th OSU International Symposium on.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
Rotational Spectroscopy of OCS in Superfluid Helium Nanodroplets Paul Raston, Rudolf Lehnig, and Wolfgang Jäger Department of Chemistry, University of.
 -  and CH-  interactions in the molecular nitrogen- and methane-pyridine complexes Department of Chemistry University of Alberta.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
pgopher in the Classroom and the Laboratory chm. bris
Steven T. Shipman, 1 Leonardo Alvarez-Valtierra, 1 Justin L. Neill, 1 Brooks H. Pate, 1 Alberto Lesarri, 2 and Zbigniew Kisiel 3 Design and performance.
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
Characterisation and Control of Cold Chiral Compounds
Microwave Spectra and Structures of H4C2CuCl and H4C2AgCl
Carlos Cabezas and Yasuki Endo
The CP-FTMW Spectrum of Bromoperfluoroacetone
International Symposium on Molecular Spectroscopy
Daniel Zaleski,a John Mullaney,a Nicholas Walkera and Anthony Legonb
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
How methyl tops talk with each other
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
and analysis of hyperfine structure from four quadrupolar nuclei
Presentation transcript:

Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium on Molecular Spectroscopy, Ohio State University, Engineering and Physical Sciences Research Council

Introduction Perfluoroiodoalkanes are a fundamental building block in crystal engineering that exploits halogen bonding. 1 Key intermediates in synthesis of fluoropolymers such as fluorinated elastomers. Provides an opportunity to quantify differences between halogen bonds to the iodine atoms of ICl and ICF 3. CF 3 I and complexes containing this molecule are excellent targets for study by broadband rotational spectroscopy because of extensive nuclear quadrupole coupling and relatively intense transitions. Our group 2,3 has recently studied H 3 N  ICF 3, (CH 3 ) 3 N  ICF 3, OC  ICF 3, Kr  ICF 3 and characterised these in series of publications. 1. P. Metrangolo, Y. Carcenac, M. Lahtinen, T. Pilati, K. Rissanen, A. Vij and G. Resnati, Science, (2009) 2. S.L. Stephens, N.R. Walker and A.C. Legon, Phys. Chem. Chem. Phys (2011) 3. S.L. Stephens, N.R. Walker and A.C. Legon, J. Chem. Phys (2011)

Power divider SPST switch Mixer Low noise amplifier Pin diode limiter Adjustable attenuator 300 W Power amplifier AWG ( GHz) Oscilloscope (0-12 GHz) 10 MHz reference frequency PDRO (19.00 GHz) GHz GHz 12.2 GHz Low-pass band filter CP-FTMW Spectrometer

H 2 S  ICF 3 Spectrum assigned using Hamiltonian of a symmetric top molecule. Exp. Sim. H 2 S  ICF 3 B 0 / MHz (81) D J / kHz (26) D JK / kHz2.7250(47)  aa (I) / MHz  (11) N 243  / kHz nozzle pulses. ~ 9 hours of averaging.

H 2 O  C 6 H 6 S. Suzuki, P.G. Green, R.E. Bumgarner, S. Dasgupta, W.A. Goddard III and G.A. Blake, Science, 257, (1992) H 2 O  CF 4 W. Caminati, A. Maris, A. Dell-Erba and P.G. Favero, Angew. Chem. Int. Ed. 45, 6711 (2006) H 2 O  CF 3 Cl L. Evangelisti, G. Feng, P. Écija, E.J. Cocinero, F. Castaño and W. Caminati, Angew. Chem. Int. Ed. 50, 7807 (2011) H 2 O  CF 3 Cl Internal Dynamics in Complexes of H 2 O and H 2 S

H 2 S  ICF 3 HDS  ICF 3 D 2 S  ICF 3 B 0 / MHz (81) (84) (9) D J / kHz (26) (27) (27) D JK / kHz (47)4.2139(59) (58)  aa (I) /MHz  (11)  (12)  (25) N  / kHz H 2 S  ICF 3 rISrIS  r I  S = (2) Å  = 93.2(1) 

Frequency / MHz * * * * * * * H 2 O  ICF 3 Simulation (symmetric only) Exp nozzle pulses. ~ 10 hours of averaging.

Frequency / MHz Simulation (symmetric only) Simulation (asymmetric only) Exp. H 2 O  ICF 3

H 2 16 O  ICF 3 H 2 18 O  ICF 3 m=0 m=  1 (K=1,2) m=0 m=  1 (K=0,1) B 0 / MHz (19) (41) (30) (34) D J / kHz (13) (38) (20)0.1029(22) D JK / kHz 1.921(16)8.517(68)1.840(24)23.59(24)  aa (I) / MHz  (84)  (17)  (16)  (23) N  / kHz HDO  ICF 3 D 2 O  ICF 3 m=0 B 0 / MHz (14) (16) D J / 10 4 kHz (9)0.1334(10) D JK / 10 4 kHz 2.071(11)1.937(13)  aa (I) / MHz  (49)  (50) N  / kHz Symmetric top fits Many lines fit. D J,  aa (I) are consistent. D JK is not.

Asymmetric top fits H 2 16 O  ICF 3 D 2 16 O  ICF 3 H 2 18 O  ICF 3 K=0,1 K=1 / MHz (43) (20) (27) (B 0  C 0 ) / MHz (58) (33) (34)  J / kHz (44)0.1336(12)0.1352(18)  JK / kHz  11.36(26) 61.71(12)   aa (I) /MHz  (19)  (12)  (21)  bb (I)  cc (I) / MHz  20.05(48)  20.20(33)  20.43(44) N  / kHz rIOrIO  Sym. r I  O = 3.041(1) Å  = 33.8(11)  Asym. r I  O = 3.040(3) Å  = 32(3) 

CF 3 I  C 2 H Frequency / MHz Frequency / MHz ,10  11 1, ,9  11 1, ,13  12 1, ,12  12 1,11 J   J = 10  11 J   J = 12  nozzle pulses. ~ 9 hours of averaging.

Acknowledgements University of Bristol Susanna Stephens Anthony C. Legon Financial Support Engineering and Physical Sciences Research Council Publication S.L. Stephens, N.R. Walker and A.C. Legon, Phys. Chem. Chem. Phys., (2011)