Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

Microsolvation of  -propiolactone as revealed by Chirped-Pulse Fourier Transform Microwave Spectroscopy Justin L. Neill, Matt T. Muckle, Daniel P. Zaleski,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Chiral recognition in molecular clusters N. Borho, M. A. Suhm Institute of Physical Chemistry, University of Göttingen.
Substitution Structures of Multiple Silicon-Containing Species by Chirped Pulse FTMW Spectroscopy Nathan A. Seifert, Simon Lobsiger, Brooks H. Pate University.
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry,
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
An Improved CP-FTMW Analysis of the Structures of Phenol Dimer and Trimer Nathan A. Seifert, Cristobal Perez, Amanda L. Steber, Daniel P. Zaleski, Justin.
Strategies for Complex Mixture Analysis in Broadband Microwave Spectroscopy Amanda L. Steber, Justin L. Neill, Matt T. Muckle, and Brooks H. Pate Department.
Water clusters observed by chirped-pulse rotational spectroscopy: Structures and hydrogen bonding Cristobal Perez, Matt T. Muckle, Daniel P. Zaleski, Nathan.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Structures of the cage, prism and book hexamer water clusters from multiple isotopic substitution Simon Lobsiger, Cristobal Perez, Daniel P. Zaleski, Nathan.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Steven T. Shipman, 1 Justin L. Neill, 2 Matt T. Muckle, 2 Richard D. Suenram, 2 and Brooks H. Pate 2 Chirped-Pulse Fourier Transform Microwave Spectroscopy.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
Internal Rotation in CF 3 I  NH 3 and CF 3 I  N(CH 3 ) 3 Probed by CP-FTMW Spectroscopy Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 66.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Molecular Stark Effect Measurements in Broadband Chirped-Pulse Fourier Transform Microwave (CP-FTMW) Spectrometers Leonardo Alvarez-Valtierra, 1 Steven.
Ab Initio and Experimental Studies of the E Internal Rotor State of He-CH 3 F Kelly J. Higgins, Zhenhong Yu, and William Klemperer, Department of Chemistry.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
An Improved Analysis of the Sevoflurane ⋯ Benzene Structure by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L. Neill,
Broadband Microwave Spectroscopy and Automated Analysis of 12 Conformers of 1-Hexanal Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Microwave Spectrum of the Ethanol-Water Dimer
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Structure of the SEVOFLURANE-BENZENE complex as determined by CP-FTMW spectroscopy Nathan A. Seifert, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate.
Applications of Molecular Rotational Spectroscopy for Chiral Analysis Rotational Spectrum and Carbon Atom Structure of Dihydroartemisinic Acid Luca Evangelistsi,
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Substitution Structures of Large Molecules and Medium Range Correlations in Quantum Chemistry Calculations Luca Evangelisti Dipartmento di Chimica “Giacomo.
Department of Chemistry
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
International Symposium on Molecular Spectroscopy, 71st Meeting
Characterization of Intermolecular Interactions in the
The CP-FTMW Spectrum of Verbenone
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
Department of Chemistry
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
Fourier transform microwave spectra of n-butanol and isobutanol
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
The rotational spectrum of the urea isocyanic acid complex
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
N-METHYL INVERSION IN PSEUDO-PELLETIERINE
John Mullaney Newcastle University
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin L. Neill, Brooks H. Pate University of Virginia Alberto Lesarri, Montserrat Vallejo-López Universidad de Valladolid Emilio J. Cocincero, Fernando Castaño Universidad del País Vasco

Introduction Suhm and coworkers observed bands blue-shifted from their monomer peaks and tentatively assigned them to larger sevoflurane oligomers (dimers, ++) Sevoflurane homodimers have a number of potential stabilizing factors: Acceptor Donor Two strong deactivating groups (-CF 3 ) Mild donating group (-OCH 2 F)  C-H is a good Lewis acid - O CH 2 F a solid Lewis base C-H/F hydrogen bonding? Diastereomeric pair observed in CP-FTMW scan: In 2011… (SS) [pictured] (SR) [pictured]

Some facts about the new sevoflurane spectrum… 9.1 million averages Dynamic range: 31000:1 Average FWHM: 60 kHz 9,600 lines over 4:1 SNR (1.6 MHz -1 ) 0.2% sevoflurane in Ne, 1 atm backing pressure Spectrometer setup identical to sevoflurane-benzene (previous talk) Experimental

ParameterMP2B3LYPM06-2X A (% Err vs Exp) (0.59%) (1.7%) (1.5%) B (% Err)183.87(4.7%) (8.3%) (7.3%) C (% Err) (4.5%) (7.1%) (6.1%) μ a, μ b, μ c 2.0, 1.4, , 1.8, , 1.4, 0.13 ΔE binding (cm -1 ) ΔE binding CP (cm -1 ) (!) Heterochiral Dimer ParameterFit Value A (MHz) (39) B (MHz) (18) C (MHz) (18) Δ J (kHz) (24) Δ JK (kHz) (62) Δ K (kHz) (13) N lines 725 σ rms (kHz)7.25 Theory Experiment Observed all 8 13 C isotopologues in natural abundance Avg. 130 transitions per isotopologue, for a total of 1720 assigned heterochiral transitions

ParameterMP2B3LYPM06-2X A (% Err vs Exp) (0.15%) (0.18%) (2.0%) B (% Err) (3.1%) (0.68%) (4.5%) C (% Err) (1.4%) (0.00%) (4.6%) μ a, μ b, μ c 1.8, 0.5, , 1.2, , 1.1, 3.1 ΔE binding (cm -1 ) ΔE binding CP (cm -1 ) ΔΔE b CP (cm -1 ) Homochiral Dimer ParameterFit Value A (MHz) (39) B (MHz) (23) C (MHz) (23) Δ J (kHz) (29) Δ JK (kHz) (43) Δ K (kHz) (67) N lines 1051 σ rms (kHz)8.19 Theory Experiment Observed all 8 13 C and both 18 O isotopologues in natural abundance A total of 1770 assigned homochiral transitions

Fix monomer geometry to ab initio (excellent agreement with monomer FTMW results) Vary three intermolecular parameters (…in theory) In STRFIT, better results using dummy atom coordinate system and fitting these parameters effectively Intermolecular r 0 structure fit Homochiral Nearly exact procedure also used for fitting heterochiral dimer (no oxygen isotopologues, so purely carbon-containing parameters were fit) Schema:

Structural Results R0R0 RsRs Significant issues with imaginary coordinates Pictured: MP2/ g(d,p) ab initio structure with r 0 /r s coordinates as small blue spheres σ fit = amu Å 2 σ fit = amu Å 2 No issues with imaginary coordinates Heterochiral Homochiral

Structural Comparison Evaluating the C-H ⋯ F interactions 1 : Typical interactions are around 2.6 Å (average) <[C-H ⋯ F] ≈ 135° for a good average C-H ⋯ F bond (sevo) 2 <[C-H ⋯ F] ≈ ° 1. H.-J. Schneider, Chem. Sci., 3 (2012), 1381, and references therein. HomochiralHeterochiral

Conclusions The (RR) and (RS) dimers, though spectrally dense, only represent ~40% of the lines > 4:1 SNR (sevo) 1 (w/ isotopes) + (sevo) 2 represents somewhere around ~60% of the transitions Therefore, an open question: what else is being formed in the jet? (sevo)(H 2 O) is a possibility, but (H 2 O) 2 is weak in this acquisition [a typical indicator of “wetness”] Higher order (sevo) n clusters?Other isomers? Discovery bottlenecked mostly by the speed/efficiency of computational methods What else can we learn from this spectrum? Structural determination of two diastereomers of (sevoflurane) 2 24 heavy atoms per cluster! Issues with imaginary coordinates easily overcome by use of a simple intermolecular r 0 fit

Acknowledgements Thanks to the NSF for funding: MRI-R2, Award CHE Pate Group Brooks Pate Cristobal Perez Simon Lobsiger Luca Evangelisti Brent Harris Amanda Steber Nathan Seifert Daniel Zaleski Newcastle University Brightspec Justin Neill Universidad de Valladolid Alberto Lesarri Montserrat Vallejo-López Thanks for your time! UPV-EHV Emilio J. Cocincero Fernando Castaño

Heterochiral Dimer Structure Results Alternation of short/long C-F ⋯ H bonds with respect to homochiral isomer Fit ParameterR 0 valueR s valueMP2/6-311+g(d,p) R(C ⋯ C) / Å 4.286(9)4.23(4)4.124 Θ(C donor ⋯ C acc -CH 2 F) / ° 71.5(2)72.2(12)73.2 Φ(C a -C ⋯ C-C a ) / ° 61.6(4) (pictured) 62(1)65.6 Lack of imaginary coordinates saves the day for the Kraitchman determination!

Homochiral Dimer Structure Results C-F ⋯ H interactions quite important, unlike in sevoflurane ⋯ benzene Fit Parameter R 0 value R s value MP2/ g(d,p) R(C ⋯ C) / Å 4.328(5) 4.33(5) Θ(C ⋯ C-O) / ° 41.5(1) 48(2) 41.4 Φ(O-C ⋯ C-O) / ° 66.8(7) (pictured) 45(4) 66.3 Evaluating the C-H ⋯ F interactions 1 : Typical interactions are around 2.6 Å (average) <[C-H ⋯ F] ≈ 135° for a good average C-H ⋯ F bond (sevo) 2 <[C-H ⋯ F] ≈ ° 1. H.-J. Schneider, Chem. Sci., 3 (2012), 1381, and references therein.