The CHIANTI Atomic Database An Overview of Data, Software and Applications Dr Peter Young George Mason University, USA NASA Goddard Space Flight Center,

Slides:



Advertisements
Similar presentations
Thermal and nonthermal contributions to the solar flare X-ray flux B. Dennis & K. PhillipsNASA/GSFC, USA J. & B. SylwesterSRC, Poland R. Schwartz & K.
Advertisements

L. Teriaca, IMPRS Seminar, Lindau 08/12/04 Spectroscopy of the solar Transition Region and Corona L. Teriaca.
The synthetic emission spectra for the electron non-thermal distributions by using CHIANTI Elena Dzifčáková Department of Astronomy, Physics of the Earth.
Fitting X-ray Spectra with Imperfect Models Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics Acknowledgments to Randall Smith and Adam Foster.
Super-Hot Thermal Plasmas in Solar Flares
Hinode / EIS Solar 24, Dec 2008 Dr Peter Young, NRL/GMU Active Region Diagnostics with EIS Dr Peter Young Dr Peter Young Naval Research Laboratory George.
The CHIANTI database Adding Ionization and Recombination to CHIANTI Dr Peter Young CCLRC/Rutherford Appleton Laboratory, UK Dr Ken Dere George Mason University,
Recombination line spectroscopy - theory and applications Robert Bastin and Peter Storey UCL Mike Barlow (UCL) and Xiaowei Liu (Peking University) with.
Atomic Processes, Theory, and Data For X-Ray Plasmas Anil Pradhan, Sultana Nahar Guo-Xin Chen (ITAMP), Franck Delahaye Justin Oelgoetz, Hong Lin Zhang.
Recent advances in the CHIANTI database in the X-ray range Enrico Landi Naval Research Laboratory.
Energetic Neutral Atoms from Solar Flares H. S. Hudson 1, R. P. Lin 1, A. L. MacKinnon 2, J. C. Raymond 3, A. Y. Shih 1, and Wang, L. 1 1 University of.
Ionization and Recombination with Electrons: Laboratory Measurements and Observational Consequences Daniel Wolf Savin Columbia Astrophysics Laboratory.
Microphysics of the radiative transfer. Numerical integration of RT in a simplest case Local Thermodynamical Equilibrium (LTE, all microprocesses are.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Ionization, Resonance excitation, fluorescence, and lasers The ground state of an atom is the state where all electrons are in the lowest available energy.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps [session no. C9] HMI/AIA science teams meeting; Monterey; Feb
Iron K Spectra from L-Shell Ions in Photoionized Plasmas Work in Progress Duane Liedahl Physics and Advanced Technologies Lawrence Livermore National Laboratory.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps [session no.] HMI/AIA science teams meeting; Monterey; Feb
Energetic Neutral Atoms from Solar Flares H. S. Hudson 1, S. Frewen 1, R. P. Lin 1, A. L. MacKinnon 2, J. C. Raymond 3, and A. Y. Shih 1 1 University of.
The CHIANTI database Assessing Atomic Models for Forbidden Transitions Dr Peter Young CCLRC/Rutherford Appleton Laboratory, UK and the CHIANTI team The.
Superhot DEM (or DF?) RHESSI continuum with TRACE or EIT FeXXIV, SUMER FeXXI, GOES, or whatever.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
JRA3: Laboratory Astrophysics Atomic & Nuclear. 2 Overview Coordinator JRA3: Wim Hermsen Two work packages: WP1: atomic physics (coordinators Ehud Behar.
Recent advances in the CHIANTI project Enrico Landi Naval Research Laboratory.
Physics 681: Solar Physics and Instrumentation – Lecture 25 Carsten Denker NJIT Physics Department Center for Solar–Terrestrial Research.
Lecture 2: Physical Processes In Astrophysical and Laboratory Plasmas Lecture 1: Temperature-Density regime Many physical processes Focus on Atomic+Plasma.
Variation of EUV solar irradiances along the cycle Vincenzo Andretta 1, Giulio Del Zanna 2, Seth Wieman 3 1 INAF – Osservatorio Astronomico di Capodimonte,
Age dependence of EM in AR Cores... and... Some thoughts on the Accuracy of Atomic Data Helen Mason, Durgesh Tripathi, Brendan O’Dwyer and Giulio Del Zanna.
SOHO/CDS CDS Users’ Meeting, Sep 2005 Dr Peter Young, CCLRC/RAL Element Abundance Results from CDS Dr Peter Young Dr Peter Young SOHO/CDS Project Scientist.
Thermal, Nonthermal, and Total Flare Energies Brian R. Dennis RHESSI Workshop Locarno, Switzerland 8 – 11 June, 2005.
Measuring DR cross sections Absolute recombination rate coefficients of tungsten ions from storage-ring experiments Stefan.
Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.
Where is Coronal Plasma Heated? James A. Klimchuk NASA Goddard Space Flight Center, USA Stephen J. Bradshaw Rice University, USA Spiros Patsourakos University.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Peter Young* George Mason University, VA Uri Feldman Artep Inc, MD *Work funded by NSF and NASA.
Atomic Data: its role in interpreting data Dr Peter Young STFC Introductory Course on Solar-Terrestrial Physics Armagh, Sept. 2007
The Influence of the Return Current and Electron Beam on the EUV and X-Ray Flare Emission E. Dzifčáková, M. Karlický Astronomical Institute of the Academy.
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
Plasma diagnostics using spectroscopic techniques
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Modelling the radiative signature of turbulent heating in coronal loops. S. Parenti 1, E. Buchlin 2, S. Galtier 1 and J-C. Vial 1, P. J. Cargill 3 1. IAS,
Atomic Physics for X-ray Astronomy: A Primer
Atomic data for heavy elements relevant to magnetic fusion and astrophysics using the Los Alamos atomic physics codes James Colgan, Honglin Zhang, and.
Lecture 3: Atomic Processes in Plasmas Recall:  Individual atomic properties (intrinsic)  Plasma processes (extrinsic) Electron-Ion processes: spectral.
POST CME EVENTS: COOL JETS AND CURRENT SHEET EVOLUTION A. Bemporad, G. Poletto, S. T. Suess IAU Symposium 226 Coronal and Stellar Mass Ejections September.
Emission I: Atomic Physics for X-ray Astronomy Randall K. Smith Johns Hopkins University NASA/GSFC.
ADAS workshop, Auburn University1 Generalised collisional-radiative modelling for Silicon and beyond Alessandra Giunta.
Operated by the Los Alamos National Security, LLC for the DOE/NNSA IAEA CODE CENTRE NETWORK SEPT 2010 Recent Developments with the Los Alamos Atomic Physics.
NON-THERMAL   DISTRIBUTIONS AND THE CORONAL EMISSION J. Dudík 1, A. Kulinová 1,2, E. Dzifčáková 1,2, M. Karlický 2 1 – OAA KAFZM FMFI, Univerzita Komenského,
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTADA VO Tools and Atomic Data for Astrophysics Giulio.
Teck-Ghee Lee, Stuart Loch, Connor Ballance, John Ludlow, Mitch Pindzola Auburn University This work was supported by a grant from the US Department of.
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
Hale COLLAGE (CU ASTR-7500) “Topics in Solar Observation Techniques” Lecture 8: Coronal emission line formation Spring 2016, Part 1 of 3: Off-limb coronagraphy.
Simulation of CHANDRA X-Ray Spectral Observations of  Pup (O4 If) J. J. MacFarlane, P. Wang Prism Computational Sciences Madison, WI J. P. Cassinelli,
CHIANTI An atomic database for X-ray spectroscopy Enrico Landi Naval Research Laboratory.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
Spectrogram 2-40 A for varying temperature. Spectra this is how we find out what everything is made of Vinay Kashyap Smithsonian Astrophysical Observatory.
UCL DEPT. OF SPACE & CLIMATE PHYSICS SOLAR & STELLAR PHYSICS GROUP Atomic Data for Astrophysics VOTada VO Tools and Atomic Data for Astrophysics Giulio.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
The CHIANTI Atomic Database Applications for astrophysics
Electron-impact excitation of Be-like Mg
VI. Forecasting Solar EUV/UV Radiation – EUV spectral synthesis
Nonthermal distributions in the solar and stellar coronae
Details of Equation-of-State and Opacity Models
Lecture 3 Radiative Transfer
ADAS workshop, Auburn University
Activities on A-M Data G. Mazzitelli ENEA
Dielectronic Recombination and Inner-Shell Photoabsorption
Studying Transition Region Phenomena with Solar-B/EIS
VOTADA VO Tools and Atomic Data for Astrophysics
Presentation transcript:

The CHIANTI Atomic Database An Overview of Data, Software and Applications Dr Peter Young George Mason University, USA NASA Goddard Space Flight Center, USA

Overview 1.Quick guide 2.History of project 3.Impact 4.Database contents a.Data for level balance b.Data for ion balance 5.Software 6.Data assessment 7.Applications Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov

Quick guide CHIANTI (data and software) is freely available over the web Website: Contains data for neutrals and ions Current version: 8.0 (September 2015) Original paper: Dere et al. (1997, A&A, 125, 149) Current paper: Del Zanna et al. (2015, A&A, 582, 56) Detailed user guide: Keywords: astrophysics − the Sun − optically-thin − emission lines Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov

NASA SDO/AIA 193 Å

SOHO Workshop, 1993, Elba, Italy

Who are the CHIANTI team? Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov (L-to-R) Giulio Del Zanna, Peter Young, Ken Dere, Massimo Landi (retired), Enrico Landi & Helen Mason

3. Impact Each version of CHIANTI is described in a paper These papers have received 2091 citations Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov CHIANTI 1: Dere et al. (1997, A&A) CHIANTI 8: Del Zanna et al. (2015, A&A)

4. What is CHIANTI? 1.Sets of atomic data –for modeling the level balance equations –for modeling the ion balance equations –for modeling continuum emission –all data stored as plain ASCII files 2.A software package –both IDL and Python versions Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov For modeling CHIANTI separates level balance (within ion) from ion balance Continuum emission not covered in this talk

4a. Level balance equations For low-density astrophysical plasmas, dominant processes are –electron excitation/de-excitation –spontaneous radiative decay Atomic quantities needed for modeling –observed energy levels –electron rate coefficients, C ij –radiative decay rates, A ij Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov A Maxwellian electron distribution is assumed

Database coverage Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov

Energy levels (ELVLC) Stored in ELVLC file Example: o_6.elvlc (O VI) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov iConfiguration Conf. index 2S+1 LJ E obs (cm -1 ) E theor (cm - 1 )

Radiative decay rates [WGFA] Stored in WGFA files Example: o_6.wgfa (O VI) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov i j λ(Å)gf A

Electron excitation (SCUPS) We store scaled versions of the effective collision strengths (upsilons) Scaling follows method of Burgess & Tully (1992, A&A) Example: o_6.scups (O VI) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov To retrieve upsilons: IDL> ups=spl2ups(‘o_6’,[i,j],temp) To retrieve rate coeff: IDL> c=rate_coeff(‘o_6’,temp,trans=[i,j]) j i scaled temps scaled ups

Sources of electron excitation data Most recent data are from the UK APAP network ( Systematic calculations along isoelectronic sequences Bespoke calculations for coronal iron ions (Fe VIII-XIV) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Nigel Badnell Pete Storey Helen Mason Giulio Del Zanna Alessandra Giunta Luis Fernández Menchero

Additional level processes 1.Proton excitation/de-excitation –mainly for ground configuration 2.Level-resolved ionization/recombination 3.Dielectronic capture 4.Autoionization –rates stored in WGFA file 5.Two-photon decays (H and He-like only) –rates stored in WGFA file 6.Photoexcitation & stimulated emission –assume radiation field (e.g., black body) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov

Level-resolved ionization/recombination Dielectronic captures to auto-ionizing states –contained in separate dielectronic models (e.g., ‘o_6d’) –treated as electron excitations, so added to SCUPS file Ionization and recombination to bound states –treated as perturbing processes to level populations –added as post-facto corrections to populations for key ions –approximation works when population mostly in ground level –data stored in.RECLVL and.CILVL files Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov These processes important for X-ray spectral modeling.

4b. Ionization balance For modeling the distribution of ion states in an electron-ionized plasma Need ion-to-ion total recombination and ionization rates In 2009 (CHIANTI 6) we started including these rates Processes –direct ionization –excitation-autoionization –radiative recombination –dielectronic recombination CHIANTI files –DIPARAMS, EASPLUPS (ionization) –RRPARAMS, DRPARAMS (recombination) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Mainly from Dere (2007, A&A, 466, 771) Mainly from N.R. Badnell & collaborators

5. Software Software package written in the Interactive Data Language (IDL) –available as tar file from webpage Since 2010, a Python package (ChiantiPy) is available – Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov

IDL software Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Read files Descale upsilons Level populations [pop_solver] Contribution functions [ch_synthetic] Emissivities [emiss_calc] Diagnostic ratios [dens_plotter] [temp_plotter] Synthetic spectra [make_chianti_spec] Continuum emission [freefree] [freebound] [twophoton]

6. Data assessment Assessment of the atomic data is a crucial part of CHIANTI 1. Each transition is assessed graphically –Burgess & Tully (1992) scaling used 2. Benchmark comparisons with solar and stellar spectra performed –intensities/fluxes predicted and compared with observations –gives confidence in data –identifies where new data are required Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Scaled temperature Scaled upsilon

Data assessment example 1.PY identifies four new Fe IX lines from Hinode/EIS spectra (Young, 2009, ApJL) 2.PY updates CHIANTI Fe IX model 3.CHIANTI 6 is released in 2009, with new data 4.Data is used by community (e.g., Brooks et al. 2009, ApJ) 5.IDs validated by lab measurements (Beiersdorfer & Lepson 2012, ApJS) 6.New Fe IX atomic data (Del Zanna et al. 2014, A&A) improves model 7.New data added to CHIANTI 8 (Del Zanna et al. 2015, A&A) Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov

7. Applications: NASA instrumentation CHIANTI used for –deriving response functions –performing calibration Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Hinode/EIS calibration (Warren et al. 2014) SDO/AIA response functions (Boerner et al. 2014)

Applications: comet emission Comet Lovejoy passed through the Sun’s corona Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov NASA SDO/AIA 171Å Bryans & Pesnell (2012, ApJ) used CHIANTI to demonstrate that AIA comet emission mostly from oxygen

Applications: Cygnus Loop Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Supernova remnant Sankrit et al. (2014, ApJ) presented Spitzer observations CHIANTI used to model spectrum NASA GALEX

Summary CHIANTI is a freely available atomic data and software package Widely used in astrophysics –analysis of spectra –predicting radiative emissions from theoretical models –instrument calibration Benchmarking and assessment critical to success of project Peter Young (GMU/GSFC) IAEA Technical Meeting, 2-4 Nov Coming soon: special issue of J. Phys. B on astrophysical spectroscopy CHIANTI paper ->