Reflection When light is incident on a surface, it can be reflected An interesting result is that the angle of incidence (incoming angle) equals the angle of reflection (outgoing angle.
Reflection from a curved surface When the surface doing the reflecting is curved, the light can be brought to a focus. The curved surface can be parabolic or spherical. Spherical surfaces are cheaper and easier to construct.
Power towers Use many collectors and focus the light to a central point. Achieves high temperatures and high power density. Each individual collector is called a heliostat Must be able to track the sun and focus light on the main tower
How they work Light is collected at the central tower, which is about 300 feet tall. There are on the order of 2000 heliostats. Used to heat water and generate steam Steam drives a turbine which generates electricity Often include auxiliary energy storage to continue to produce electricity in the absence of sunlight More costly to construct and operate than coal fired plants. Good candidates for cogeneration- waste steam could be used for space heating
Solar troughs A parabolic shaped trough collects the light and focuses it onto a receiver. The receiver has a fluid running through it which carries the heat to a central location where it drives a steam turbine May have more than a hundred separate troughs at such a facility
Trough Pictures
Direct Conversion of sunlight to energy: Photo-voltaics Photoelectric effect: When electromagnetic energy impinges upon a metal surface, electrons are emitted from the surface. Hertz is often credited with first noticing it (because he published his findings) in 1887 but it was seen by Becquerel In 1839 and Smith in 1873.
Photoelectric effect The effect was a puzzle The theory of light as a wave did not explain the photoelectric effect Great example of the scientific method in action. – Up until this point, all the observations of light were consistent with the hypothesis that light was a wave. – Now there were new observations could not be explained by this hypothesis – The challenge became how to refine the existing theory of light as a wave to account for the photoelectric effect
Photoelectric effect explained Einstein in 1905 explained the photoelectric effect by assuming light was made of discrete packets of energy, called photons. Not a new idea, he was building upon an idea proposed by Planck, that light came in discrete packets. (in fact, Newton proposed a particle like explanation of light centuries earlier). The problem for Planck was his discrete packets were in conflict with the wave like behavior of light.
Photoelectric effect explained But now, a behavior of light was observed that fit Planck’s energy packet idea. So electromagnetic radiation appears to behave as if it is both a wave and a particle. In fact, you can think of light as discrete wave packets-packets of waves which, depending upon the measurement you make, sometimes exhibit particle behavior and sometimes exhibit wave behavior. Einstein won the Nobel prize for his explanation of the photoelectric effect.
Semi conductors Devices which have conductive properties in between a conductor and an insulator. Normally, the outer (valence) electrons are tightly bound to the nucleus and cannot move. If one or all of them could be freed up, then the material can conduct electricity Silicon is an example of a semi-conductor.
Silicon Element 14 in the periodic table Very common element (sand, glass composed of it) 8 th most common element in the universe Its 4 outer valence electrons are normal tightly bound in the crystal structure. However, when exposed to light, the outer electrons can break free via the photoelectric effect and conduct electricity. For silicon, the maximum wavelength to produce the photoelectric effect is 1.12 microns. 77% of sunlight is at wavelengths lower than this.