RD53 Analog IP blocks WG : developments and plans at CPPM M. Barbero, L. Gallin Martel (LPSC), Dzahini (LPSC), D. Fougeron, R. Gaglione (LAPP), F. Gensolen,

Slides:



Advertisements
Similar presentations
SAAB SPACE 1 The M2 ASIC A mixed analogue/digital ASIC for acquisition and control in data handling systems Olle Martinsson AMICSA, October 2-3, 2006.
Advertisements

Sensors Interfacing.
Digital to Analogue Conversion Chapter 13. Why is conversion needed? Most signals in the world are analogue. Microprocessors and most computers computers.
Announcements Assignment 8 posted –Due Friday Dec 2 nd. A bit longer than others. Project progress? Dates –Thursday 12/1 review lecture –Tuesday 12/6 project.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
Pixel-level delta-sigma ADC with optimized area and power for vertically-integrated image sensors 1 Alireza Mahmoodi and Dileepan Joseph University of.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
1 Dr. Un-ki Yang Particle Physics Group or Shuster 5.15 Amplifiers and Feedback: 3.
Introduction to Analog-to-Digital Converters
Analogue Input/Output
A radiation-tolerant LDO voltage regulator for HEP applications F.Faccio, P.Moreira, A.Marchioro, S.Velitchko CERN.
The new E-port interface circuits Filip Tavernier CERN.
PEALL: Power Efficient And Low Latency A 40 MSPS 12 bits SAR ADC for LTD Joel Bouvier, Daniel Dzahini, Carolina Gabaldon, Laurent Gallin-Martel Fatah Ellah.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Flow sensor circuitry Eduard Stikvoort 00/1A The work was done in Philips Reaearch Eindhoven.
Analog to Digital Converters (ADC) 1
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
Analog to Digital conversion. Introduction  The process of converting an analog signal into an equivalent digital signal is known as Analog to Digital.
Analog to Digital Converters (ADC) Ben Lester, Mike Steele, Quinn Morrison.
Jean-Marie Bussat – October 16, FPPA2000 Bias generator.
18/10/20151 Calibration of Input-Matching and its Center Frequency for an Inductively Degenerated Low Noise Amplifier Laboratory of Electronics and Information.
1 Successive Approximation Analog-to- Digital Conversion at Video Rates 指導教授 :汪輝明 學 生:陳柏宏.
Design of Digital-to-Analog Converter Qin Chen Yong Wang Dept. of Electrical Engineering Mar. 14th, 2006 EE597G Presentation:
Data Acquisition ET 228 Chapter 15 Subjects Covered Analog to Digital Converter Characteristics Integrating ADCs Successive Approximation ADCs Flash ADCs.
Mixed Signal Chip Design Lab Cubic Function Generator Design Boram Lee, Jaehyun Lim Department of Computer Science and Engineering The Pennsylvania State.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
CLICpix2 Design Status Pierpaolo Valerio & Edinei Santin
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Erik Jonsson School of Engineering & Computer Science Redundant SAR ADC Architecture and Circuit Techniques for ATLAS LAr Phase-II Upgrade Ling Du 1, Hongda.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
Low Power, High-Throughput AD Converters
FE-I4 irradiated chip tests at low temperature M. Menouni, P. Breugnon, A. Rozanov (CPPM - Aix-Marseille Université)
Low Power, High-Throughput AD Converters
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
0808/0809 ADC. Block Diagram ADC ADC0808/ADC Bit μP Compatible A/D Converters with 8-Channel Multiplexer The 8-bit A/D converter uses successive.
1 Etat d’avancement de la conception des Blocs FEI4 CPPM, Université de la méditerranée, CNRS/IN2P3, Marseille, France.
Low Power, High-Throughput AD Converters
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
EE140 Final Project Members: Jason Su Roberto Bandeira Wenpeng Wang.
- TMS - Temperature Monitoring System in Topix Olave Jonhatan INFN section of Turin and Politecnico P PANDA Collaboration Meeting December 9 th
A 12-bit low-power ADC for SKIROC
DCD – Measurements and Plans
High speed pipelined ADC + Multiplexer for CALICE
High speed 12 bits Pipelined ADC proposal for the Ecal
R&D activity dedicated to the VFE of the Si-W Ecal
Christophe Beigbeder PID meeting
Hugo França-Santos - CERN
UNIT-5 Design of CMOS Op Amps.
Peripheral IP blocks per chip “Superstrip”
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
Simple ADC structures.
Driving, conditioning and signal acquisition
Lesson 8: Analog Signal Conversion
Choix d’une architecture de CAN adaptée au MAPS
The NECTAR0 Chip Irfu: F. Guilloux, E.Delagnes
Turning photons into bits in the cold
Stefan Ritt Paul Scherrer Institute, Switzerland
SIS20:A CMOS ASIC for SOLAR IRRADIANCE SENSORS in MARS SURFACE
DARE180U New Analog IPs Laurent Berti AMICSA 2018, LEUVEN.
ATMX150RHA Circuit Design Platform
Errol Leon, Analog Applications Precision Linear Analog Applications
A 12 bit 50 MS/s Dual Channel Time Domain Two Step ADC
RD53 Temperature Sensors
A 12 bit 50 MS/s Dual Channel Time Domain Two Step ADC
Presentation transcript:

RD53 Analog IP blocks WG : developments and plans at CPPM M. Barbero, L. Gallin Martel (LPSC), Dzahini (LPSC), D. Fougeron, R. Gaglione (LAPP), F. Gensolen, S. Godiot, M. Menouni, P. Pangaud, F. Rarbi (LPSC), A. Wang, A. Rozanov CPPM - Aix-Marseille Université

Pixel configuration memory  Previous tests on the LBL chip :  Good results in term of tolerance to SEU  Design based on standard cells from ARM library  Some issues with dose effects  A new design is now under development  Design tolerant to a total dose of 1000 MRad  Minimize the effect of glitches  Test of new structures (based on Hamming code …) to reduce the memory cell area December 18, 2013IP Blocks 65 nm design2 Datain Latch1 Latch2 Latch3 Majority Logic sel tt 2t2t

Generic ADC for monitoring  General purpose ADC  Inputs are slow variation signals :  Temperature, leakage current …  Power supply = 1.2 V  Sampling rate: ( ) ksample/s  Architecture : Successive Approximation Register (SAR)  Precision : 12 bit (LSB ~ 250 µV)  DC accuracy :  Integral linearity error : +/- 1 bit  Differential linearity error +/- 0.5 bit  Operating input voltage : 0-Vref  Conversion time : clock cycles  Tolerance to a TID of 1000 Mrad  Need of a very stable Voltage Reference December 18, 2013IP Blocks 65 nm design3 out 12 bit SAR ADC Analog MUX Vin start status clk inputs select enable

December 18, 2013IP Blocks 65 nm design4 Bandgap reference  Bandgap Reference for general purpose provide voltage reference for :  Biasing, DAC, ADC …  Power supply = 1.2 V  2 Voltages : to be defined (0.8 V? and 0.6 V?)  Temperature : from -50 °C to 120 °C  Temperature coefficient : 400 ppm/°C max  Voltage coefficient : TBD  Start up circuit  CLoad MAX = 20pF and RLoad = 10 MOhm  Noise < 20 µV RMS  Radiation hard : 1000 Mrad  Base current compensation (others structures)  DTMOS structure  Avoid trimming ? M2M2 M3M3 M1M1 R A1 R1R1 R A2 R B1 R B2 R3R3 D2D2 D 1 =M*D 2 V OUT N1N1 N2N2 N3N3 N4N4

December 18, 2013IP Blocks 65 nm design5 Multi Purpose Op Amplifier  General purpose operational amplifier  Power supply = 1.2 V  Rail to rail input and output  High output driving capability  CLOAD MAX = 10 pF  DC gain > 70 dB  Gain-Bandwidth product GBWP > 10 MHz  Slew rate : TBD  Phase margin = 70°  CMMR : TBD  PSSR :TBD  Irradiation tolerance : 1000 Mrad inn inp en Vdda Gnda out Vbn MPOA

Temperature Sensor  Precision : +/- 1 °C  Functional temperature range -40 to +60 °C  Sensitivity better than 0.6 mV/°C  Radiation tolerance : 1000 MRad  Correction of the irradiation effect  Output value digitized by the GADC December 18, 2013IP Blocks 65 nm design6 en Vdda Gnda out Vbn TempSens

December 18, 2013IP Blocks 65 nm design7 Conclusion  Deliverables  Virtuoso OA database : Schematic, symbol and layout views  Post layout netlist (RC parasitics)  Documentation including the main DC levels, simulations et test results  Next submission  The design of some IP blocks is in progress  We would like to submit some design blocks at the beginning of 2014  We are looking for partners to share a MPW