Fundamental Theorem AP Calculus
Where we have come. Calculus I: Rate of Change Function
f’ T T f PDPD DCDC
Where we have come. Calculus II: Accumulation Function
Accumulation: Riemann’s Right V T
Accumulation (2) Using the Accumulation Model, the Definite Integral represents NET ACCUMULATION -- combining both gains and losses V T D T REM: Rate * Time = Distance
Accumulation: Exact Accumulation V T xx f ( x i )
Where we have come. Calculus I: Rate of Change Function Calculus II: Accumulation Function Using DISTANCE model f’ = velocity f = Position Σ v(t) Δt = Distance traveled
Distance Model: How Far have I Gone? V T Distance Traveled: a) b)
B). The Fundamental Theorem DEFN: THE DEFINITE INTEGRAL If f is defined on the closed interval [a,b] and exists, then
B). The Fundamental Theorem The Definition of the Definite Integral shows the set-up. Your work must include a Riemann’s sum! (for a representative rectangle)
The Fundamental Theorem of Calculus (Part A) If or F is an antiderivative of f, then
REM: The Definite Integral is a NUMBER -- the Net Accumulation of Area or Distance -- It may be positive, negative, or zero. The Fundamental Theorem of Calculus shows how to solve the problem! Your work must include an anti-derivative!
Practice: Evaluate each Definite Integral using the FTC. 1) 2). 3). The FTC give the METHOD TO SOLVE Definite Integrals.
Example: SET UP Find the NET Accumulation represented by the region between the graph and the x - axis on the interval [-2,3]. REQUIRED: Your work must include a Riemann’s sum! (for a representative rectangle)
Example: Work Find the NET Accumulation represented by the region between the graph and the x - axis on the interval [-2,3]. REQUIRED: Your work must include an antiderivative!
Method: (Grading) A) B) C).5. D).6. 7.
Example: Find the NET Accumulation represented by the region between the graph and the x - axis on the interval.
Example: Find the NET Accumulation represented by the region between the graph and the x - axis on the interval.
Last Update: 1/20/10
Antiderivatives Layman’s Description: Assignment: Worksheet
Accumulating Distance (2) Using the Accumulation Model, the Definite Integral represents NET ACCUMULATION -- combining both gains and losses V T D T REM: Rate * Time = Distance 4
Rectangular Approximations Velocity Time V = f (t) Distance Traveled:a) b)