Introduction to Taxonomy

Slides:



Advertisements
Similar presentations
Classification Week 14-A.
Advertisements

Classification.
Copyright Pearson Prentice Hall
Georgia Performance Standards:
Slide 1 of 26 Copyright Pearson Prentice Hall Biology.
End Show Slide 1 of 26 Copyright Pearson Prentice Hall 18-1 Finding Order in Diversity.
Chapter 18 Classification
Ch 18- Classification Why do biologists organize living organisms into groups that have biological meaning? Study the diversity of life Use classification.
Chapter 18.  Why Classify? ◦ Scientists classify organisms into groups in a logical manner to make it easier to study the diversity of life. ◦ Taxonomy:
ANIMALIA. kingdom of multicellular eukaryotic heterotrophs whose cells do not have cell walls.
Kingdoms and Domains 18.3.
Essential Questions What is an example of a vestigial organ?
Classification Chapter 3.
Classification Ch. 18 (Part 2). The Domain System Molecular analyses have given rise to the new larger category called the Domain. The three-domain system.
Classification Chapter 18.
18.3 Building the Tree of Life
Kingdoms and Domains By: Brittnie, Candelaria, Kevin, and John.
End Show Slide 1 of 28 Copyright Pearson Prentice Hall 18-3 Kingdoms and Domains.
Slide 1 of 28 Copyright Pearson Prentice Hall Biology.
Classification Chapter Taxonomy Process of classifying organisms and giving each a universally accepted name Process of classifying organisms.
Copyright Pearson Prentice Hall
18.3 Building the Tree of Life
18.1 Finding Order in Diversity. To study the diversity of life, biologists use a classification system to name organisms and group them in a logical.
18.3 Building the Tree of Life
Chapter 18 Classification The diversity of life. Why is it necessary to classify? 1.5 million species on the planet so all creatures must be organized.
Warm Up b How many domains are there? b What are they (try your best here) b How many kingdoms do you think there are? b What are they? (try your best.
1 Chapter 18- Classification. 2 I. Finding order in Diversity A. Why classify? 1. To study the diversity of life, biologists use a classification system.
Finding Order in Diversity.  Scientist have named about 1.5 million species  However, it is estimated that there still are million additional.
End Show Slide 1 of Finding Order in Diversity.
18-3 Kingdoms and Domains. The Tree of Life Evolves  Organisms originally grouped as either plant or animal  Scientists realized that bacteria, protists.
Introduction to Taxonomy. Why Classify? To study the diversity of life, biologists use a classification system to name organisms and group them in a logical.
C LASSIFICATION Ms. Moore 1/14/12. W HY CLASSIFY ? To study the diversity of life, biologists use a classification system to name organisms and group.
Classification Notes.
Classification Chapter 1.4. Vocabulary 1. taxonomy 2. binomial nomenclature 3. classification 4. domain 5.Eubacteria 6. Archaebacteria 7. Eukarya 8. Protista.
1 Chapter 18: Classification. 2 18–1 Finding Order in Diversity  Life on Earth has been changing for more than 3.5 billion years  1.5 million species.
Chapter 18 Classification.
Slide 1 of 28 Copyright Pearson Prentice Hall Biology.
Copyright Pearson Prentice Hall
End Show Slide 1 of 28 Copyright Pearson Prentice Hall Biology.
1 FINDING ORDER IN DIVERSITY OBJECTIVES: 18.1 Explain how living things are organized for study for study. Describe binomial nomenclature. Explain Linnaeus’s.
End Show Slide 1 of 28 Copyright Pearson Prentice Hall Biology.
Chapter 18 Classification. Section 18-1 Why Classify? Because of the diversity and number of organisms on planet Earth. Each organism need a name, and.
End Show Slide 1 of 28 Biology Mr. Karns Classification New System.
Classification/Taxonomy Chapter 18. Why Classify? Why Classify?
Lesson Overview Lesson Overview Building the Tree of Life Lesson Overview 18.3 Building the Tree of Life The process of identifying and naming all known.
Nomenclature & The Tree of Life. Systematics Biological systematics is the study of the diversification of living forms, both past and present, and the.
Lesson Overview Lesson Overview Building the Tree of Life Lesson Overview 18.3 Building the Tree of Life.
Mikael Mara CLASSIFICATION. Species A species is a population of organisms that share similar characteristics and can breed with one another, producing.
Mystery Organisms Bellwork: Friday March 6, 2015 Get ½ sheet chart and use your notes to fill it in.
18-1 Finding Order in Diversity
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
18-1 Finding Order in Diversity
Copyright Pearson Prentice Hall
18-1 Finding Order in Diversity
18-1 Finding Order in Diversity
Unit 2 Classification.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Chapter 18 The History of Life.
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Copyright Pearson Prentice Hall
Chapter 18 Classification.
Copyright Pearson Prentice Hall
18-1 Finding Order in Diversity
Mystery Organisms Bellwork: Friday March 21, 2017 Get ½ sheet chart and use your notes to fill it in.
Copyright Pearson Prentice Hall
Presentation transcript:

Introduction to Taxonomy

Copyright Pearson Prentice Hall Why Classify? Why Classify? To study the diversity of life, biologists use a classification system to name organisms and group them in a logical manner. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Why Classify? In the discipline of taxonomy, scientists classify organisms and assign each organism a universally accepted name. Copyright Pearson Prentice Hall

Assigning Scientific Names Common names of organisms vary, so scientists assign one name for each species. Always in Latin. Genus species Homo sapiens Copyright Pearson Prentice Hall

Assigning Scientific Names Carolus Linneaus developed a naming system called binomial nomenclature. In binomial nomenclature, each species is assigned a two-part scientific name. The scientific name is italicized. Canis familiaris Felis catus Copyright Pearson Prentice Hall

Linnaeus's System of Classification   Linnaeus's seven levels of classification are—from smallest to largest— species genus family order class phylum kingdom Copyright Pearson Prentice Hall

Linnaeus's System of Classification  Each level is called a taxon, or taxonomic category. Species and genus are the two smallest categories. Grizzly bear Black bear Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Copyright Pearson Prentice Hall

Linnaeus's System of Classification Genera that share many characteristics are grouped in a larger category, the family. Grizzly bear Black bear Giant panda Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Copyright Pearson Prentice Hall

Linnaeus's System of Classification An order is a broad category composed of similar families. Grizzly bear Black bear Giant panda Red fox Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Copyright Pearson Prentice Hall

Linnaeus's System of Classification The next larger category, the class, is composed of similar orders. Grizzly bear Black bear Giant panda Red fox Abert squirrel Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Class Mammalia Copyright Pearson Prentice Hall

Linnaeus's System of Classification Several different classes make up a phylum. Grizzly bear Black bear Giant panda Red fox Abert squirrel Coral snake PHYLUM Chordata Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Copyright Pearson Prentice Hall

Linnaeus's System of Classification The kingdom is the largest and most inclusive of Linnaeus's taxonomic categories. Grizzly bear Black bear Giant panda Red fox Abert squirrel Coral snake Sea star KINGDOM Animalia Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Copyright Pearson Prentice Hall

Linnaeus's System of Classification Grizzly bear Black bear Giant panda Red fox Abert squirrel Coral snake Sea star Linnaeus’s hierarchical system of classification uses seven taxonomic categories. This illustration shows how a grizzly bear, Ursus arctos, is grouped within each taxonomic category. Only some representative species are illustrated for each category above the species level. Copyright Pearson Prentice Hall

Similarities in DNA and RNA The genes of many organisms show important similarities at the molecular level. Similarities in DNA can be used to help determine classification and evolutionary relationships. Copyright Pearson Prentice Hall

The Tree of Life Evolves Systems of classification adapt to new discoveries. Linnaeus classified organisms into two kingdoms—animals and plants. Copyright Pearson Prentice Hall

The Tree of Life Evolves Five Kingdoms Scientists realized there were enough differences among organisms to make 5 kingdoms: Monera Protista Fungi Plantae Animalia Copyright Pearson Prentice Hall

The Tree of Life Evolves Six Kingdoms Recently, biologists recognized that Monera were composed of two distinct groups: Eubacteria and Archaebacteria. Copyright Pearson Prentice Hall

The Tree of Life Evolves The six-kingdom system of classification includes: Eubacteria Archaebacteria Protista Fungi Plantae Animalia Copyright Pearson Prentice Hall

The Three-Domain System Molecular analyses have given rise to a new taxonomic category that is now recognized by many scientists. The domain is a more inclusive category than any other — larger than a kingdom. Copyright Pearson Prentice Hall

The Three-Domain System The three domains are: Eukarya, which is composed of protists, fungi, plants, and animals. Bacteria, which corresponds to the kingdom Eubacteria. Archaea, which corresponds to the kingdom Archaebacteria. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Bacteria Domain Bacteria Members of the domain Bacteria are unicellular prokaryotes. Their cells have thick, rigid cell walls that surround a cell membrane. Their cell walls contain peptidoglycan. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Archaea Domain Archaea Members of the domain Archaea are unicellular prokaryotes. Many live in extreme environments. Their cell walls lack peptidoglycan, and their cell membranes contain unusual lipids not found in any other organism. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Eukarya Domain Eukarya The domain Eukarya consists of organisms that have a nucleus. This domain is organized into four kingdoms: Protista Fungi Plantae Animalia Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Eukarya Protista  The kingdom Protista is composed of eukaryotic organisms that cannot be classified as animals, plants, or fungi. Its members display the greatest variety. They can be unicellular or multicellular; photosynthetic or heterotrophic; and can share characteristics with plants, fungi, or animals. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Eukarya Fungi  Members of the kingdom Fungi are heterotrophs. Most fungi feed on dead or decaying organic matter by secreting digestive enzymes into it and absorbing small food molecules into their bodies. They can be either multicellular (mushrooms) or unicellular (yeasts). Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Eukarya Plantae  Members of the kingdom Plantae are multicellular, photosynthetic autotrophs. Plants are nonmotile—they cannot move from place to place. Plants have cell walls that contain cellulose. Copyright Pearson Prentice Hall

Copyright Pearson Prentice Hall Domain Eukarya Animalia  Members of the kingdom Animalia are multicellular and heterotrophic. The cells of animals do not have cell walls. There is great diversity within the animal kingdom, and many species exist in nearly every part of the planet. Copyright Pearson Prentice Hall