Photochemistry h
O h T1T1
O h Acrolein T1T1 Photochemistry
T(n, * ) T( , *) P.E. Twisting coordinate
T 1 (n, * ) T 1 ( , *) P.E. Twisting coordinate T1T1 T1T1 T2T2 T2T2
T 1 (n, * ) T 1 ( , *) T1T1 T1T1 T2T2 T2T2 S0S0 S 1 (n, * )
T 1 (n, * )← S 0 S 1 (n, * )← S 0 Survey at 0.05-nm resolution (Cary-5E) Acrolein (84 T) in 10-cm cell at room temperature 1 1 Prof. William Polik, Hope College
T 1 (n, * )← S 0 S 1 (n, * )← S 0 Survey at 0.05-nm resolution (Cary-5E) Acrolein (84 T) in 10-cm cell at room temperature 1 1 Prof. William Polik, Hope College
Dye Laser Telescope Ringdown Cell Photomultiplier OscilloscopeComputer Nd:YAG Laser 10 Hz 355 nm 385 nm, 0.2 mJ/pulse 50
Dye Laser Telescope Ringdown Cell Photomultiplier OscilloscopeComputer Nd:YAG Laser 10 Hz 355 nm 385 nm, 0.2 mJ/pulse 50 Jordan Valve
T 1 (n, * )← S 0 S 1 (n, * )← S 0 Survey at 0.05-nm resolution (Cary-5E) Acrolein (84 T) in 10-cm cell at room temperature 1 1 Prof. William Polik, Hope College
CRD Survey Spectrum T 1 (n, * )← S 0 S 1 (n, * )← S 0 Room Temp
T 1 (n, * )← S 0 S 1 (n, * )← S 0 CRD Survey Spectrum Room Temp Jet-Cooled
T 1 (n, * )← S 0 S 1 (n, * )← S 0 CRD Survey Spectrum Room Temp Jet-Cooled
T 1 (n, * )← S band
T 1 (n, * )← S band
Hund’s Case (b)
J= ±1 N=0, ±1, ±2 N″=1 N′=3 J″=1 N′=2 J′=1 J′=2 J′=3 J′=2 J′=3 J′=4 N′=1 J′=0 J′=1 J′=2 T1T1 S0S0
b a c J= 0, ±1 K a = 0, ±1, ±2 N=0, ±1, ±2 J= ±1 N=0, ±1, ±2 Singlet-Triplet Selection Rules E rot ≈ BN(N+1) + K a 2 (A – B)
b a c J= 0, ±1 K a = 0, ±1, ±2 N=0, ±1, ±2 J= ±1 N=0, ±1, ±2 Singlet-Triplet Selection Rules E rot ≈ BN(N+1) + K a 2 (A – B)
T 1 (n, * )← S band
T 1 (n, * )← S band Hot bands
Room Temp Jet-Cooled
b a c E rot ≈ BN(N+1) + K a 2 (A – B)
Jet-Cooled b a c K″ = … sub-band origins, K a =0 E rot ≈ BN(N+1) + K a 2 (A – B)
K″ = 3 Sub-band head, N = +2, N″ ~ 45 Jet-Cooled STROTA 1 1 Richard Judge et al. E rot ≈ BN(N+1) + K a 2 (A – B)
K″ = 3 Jet-Cooled K a =0, N=+2 STROTA E rot ≈ BN(N+1) + K a 2 (A – B)
STROTA
K a ″ = 3 heads K a ″ = 8 head 9 10 N=+1 N=+2 4
K a ″ = 3 heads N=+2 A″ = cm –1 B″ = cm –1 C″ = cm –1 A′ = cm –1 B′ = cm –1 C′ = cm –1 K a ″ = 8 head 9 10 N=+1 T 1 (n, *) Microwave Spectroscopy
A″ = cm –1 B″ = cm –1 C″ = cm –1 A′ = cm –1 B′ = cm –1 C′ = cm –1 Room Temp Jet-Cooled T 1 (n, *) exp sim exp Microwave Spectroscopy
A″ = cm –1 B″ = cm –1 C″ = cm –1 A′ = cm –1 B′ = cm –1 C′ = cm –1 T rot = 63 K Lor = 0.20 cm -1 T 1 (n, *) exp sim Microwave Spectroscopy
A″ = cm –1 B″ = cm –1 C″ = cm –1 A′ = cm –1 B′ = cm –1 C′ = cm –1 T rot = 63 K Lor = 0.20 cm -1 T 1 (n, *) = 25 ps T 1 (n, *) exp sim Microwave Spectroscopy
A″ = cm –1 B″ = cm –1 C″ = cm –1 A′ = cm –1 B′ = cm –1 C′ = cm –1 T rot = 63 K Lor = 0.20 cm -1 T 1 (n, *) = 25 ps T 1 (n, *) exp sim S 1 (n, *) 1 = 2 ps 1 K.W. Paulisse et al., J. Chem. Phys. v. 113, p. 184 (2000). Microwave Spectroscopy
T 1 (n, * ) T 1 ( , *) T1T1 T1T1 T2T2 T2T2 S0S0 S 1 (n, * )
Acknowledgements NSF (CHE ) Camille and Henry Dreyfus Foundation, Inc. (Henry Dreyfus Teacher-Scholar Award) Prof. Richard Judge (UW-Parkside) Prof. William Polik (Hope College)