Three-dimensional magnetization process in HoFe11Ti

Slides:



Advertisements
Similar presentations
Rare-earth-iron nanocrystalline magnets E.Burzo 1), C.Djega 2) 1) Faculty of Physics, Babes-Bolyai University, Cluj-Napoca 2) Universite Paris XII, France.
Advertisements

Spin order in correlated electron systems
Ivane Javakhishvili Tbilisi State University Institute of Condensed Matter Physics Giorgi Khazaradze M Synthesis and Magnetic Properties of Multiferroic.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Anandh Subramaniam & Kantesh Balani
Transient ferromagnetic state mediating ultrafast reversal of antiferromagnetically coupled spins I. Radu1,2*, K. Vahaplar1, C. Stamm2, T. Kachel2, N.
Introduction of phase diagram Hongqun Dong Introduction of phase diagram.
Karel Výborný, Jan Zemen, Kamil Olejník, Petr Vašek, Miroslav Cukr, Vít Novák, Andrew Rushforth, R.P.Campion, C.T. Foxon, B.L. Gallagher, Tomáš Jungwirth.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Magnetism and Magnetic Materials DTU (10313) – 10 ECTS KU – 7.5 ECTS Sub-atomic – pm-nm Module 2 04/02/2001 Isolated magnetic moments.
Montek Singh COMP Sep 6,  Basics of magnetism  Nanomagnets and their coupling  Next class: ◦ Challenges and Benefits ◦ Open questions.
Magnetic Materials.
- Lian Zhang Search for magnetic refrigerant materials WZI group meeting May 28 th 2003, UvA.
EEE340Lecture 361 The magnetic field The total magnetic field Note: The Eq. above doesn't work for summation of two waves! (8-103)
P461 - magnetism1 Magnetic Properties of Materials H = magnetic field strength from macroscopic currents M = field due to charge movement and spin in atoms.
Magnetism in Chemistry. General concepts There are three principal origins for the magnetic moment of a free atom: The spins of the electrons. Unpaired.
H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.
Magnetocaloric effects in intermetallic compounds
Ferromagnetism At the Curie Temperature Tc, the magnetism M becomes zero. Tc is mainly determined by the exchange J. As T approaches Tc, M approaches zero.
Magnetism III: Magnetic Ordering
Rare Earth Magnets by Christopher Rust Neodymium-Iron-Boron Magnets Nd 2 Fe 14 B.
AC-susceptibility method for Curie temperature determination. Experiment and theory A.V. Korolev, M.I. Kurkin, Ye.V. Rosenfeld Institute of Metal Physics,
Magnetic Properties of Materials
Howard H. Liebermann, Ph.D..  Structure of Metals  On atomic level, regular arrangement of atoms immersed in “sea” of “free electrons”.  Results of.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Magnetic transition in the Kondo lattice system CeRhSn2
Engineering Mechanics: Statics
Magnetic Material Engineering. Chapter 6: Applications in Medical and Biology Magnetic Material Engineering.
Permanent Magnets based on Fe-Pt Alloys P.D. Thang, E. Brück, K.H.J. Buschow, F.R. de Boer Financial support by STW.
Development of Domain Theory By Ampere in The atomic magnetic moments are due to “electrical current continually circulating within the atom” -This.
STRUCTURE AND MAGNETIC PROPERTIES OF ULTRA-THIN MAGNETIC LAYERS
Antiferromagnetic resonance in frustrated system Ni5(TeO3)4Br2
Magnetic Properties Scott Allen Physics Department University of Guelph of nanostructures.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Models of Ferromagnetism Ion Ivan. Contents: 1.Models of ferromagnetism: Weiss and Heisenberg 2.Magnetic domains.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Electric field manipulation of magnetization at room temperature in multiferroic CoFe 2 O 4 /Pb(Mg 1/3 Nb 2/3 ) 0.7 Ti 0.3 O 3 heterostructures J. J. Yang,
Co-ordination Chemistry Theories of Bonding in Co-ordination compound. 1. Valence Bond Theory 2. Crystal Field Theory 3. Molecular Orbital Theory.
Transition Metal Oxides Rock Salt and Rutile: Metal-Metal Bonding
The first-order magnetostructural transition in Gd 5 Sn 4 D.H. Ryan Physics Department, McGill University, Montreal, QC, Canada, H3A 2T8
Hall effect and conductivity in the single crystals of La-Sr and La-Ba manganites N.G.Bebenin 1), R.I.Zainullina 1), N.S.Chusheva 1), V.V.Ustinov 1), Ya.M.Mukovskii.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Ferromagnetism in neutron matter
Rock magnetism.
Gavin W Morley Department of Physics University of Warwick Diamond Science & Technology Centre for Doctoral Training, MSc course Module 2 – Properties.
Emergent Nematic State in Iron-based Superconductors
The force on a current-carrying wire A magnetic field exerts a force on a single moving charge, so it's not surprising that it exerts a force on a current-carrying.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetic Interactions and Order-out-of-disorder in Insulating Oxides Ora Entin-Wohlman, A. Brooks Harris, Taner Yildirim Robert J. Birgeneau, Marc A. Kastner,
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Total Angular Momentum L, L z, S, S z J and J z are quantized Orbital angular momentumSpin angular momentum Total angular momentum.
1 Non-uniform superconductivity in superconductor/ferromagnet nanostructures A. Buzdin Institut Universitaire de France, Paris and Condensed Matter Theory.
Consider Three Dimensions z y x a axax ayay azaz   xy Projection Polar Angle Azimuthal Angle.
Right-hand Rule 2 gives direction of Force on a moving positive charge Right-Hand Rule Right-hand Rule 1 gives direction of Magnetic Field due to current.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
Magnetic Properties from Molecules to Solids
Macroscopic Dynamics of Ferromagnetic Nematics
© 2011 Cengage Learning Engineering. All Rights Reserved.
MAGNETIC MATERIALS. MAGNETIC MATERIALS – Introduction MAGNETIC MATERIALS.
Effect of Electric Field on the Behaviors of Phase and Phase Transition of Water Confined in Carbon Nanotube Zhenyu Qian, Zhaoming Fu, and Guanghong Wei.
Chapter 10 Magnetic Properties Introduction 10
Anisotropic superconducting properties
The force on a current-carrying wire
Theory of Magnetic Moment in Iron Pnictides (LaOFeAs) Jiansheng Wu (UIUC), Philip Phillips (UIUC) and A.H.Castro Neto (BU) arxiv:
Ferromagnetism.
Magnetic Properties of Coordination Compounds
Ginzburg-Landau theory
Presentation transcript:

Three-dimensional magnetization process in HoFe11Ti Yuri Janssen, J.C.P. Klaasse, E. Brück, F.R. de Boer, K.H.J. Buschow, J. Kamarád1, N.V. Kudrevatykh2 I M II B We observed, for the first time, a three-dimensional magnetization process 1: Institute of Physics, Praha 2: Institute of Physics and Applied Mathematics, Ekaterinburg

Outline Introduction Experiment Results Conclusion

Research of rare-earth (R) – transition-metal (T) compounds Modern permanent magnets: - SmCo5 (1960s) - Nd2Fe14B (1984) - RFe11Ti (1990s) Requirements: - large magnetization - high ordering temperature - high coercivity  large magnetocrystalline anistropy

Magnetic R-T coupling essential for coupling between: - large magnetization (T) - high anisotropy (R) Hund’s rules ==> Light-R (Nd, Sm) – T : parallel coupling => ferromagnets Heavy-R (Gd, ..Ho, Tm) – T : antiparallel coupling => ferrimagnets MR MT M MR MT M

Tetragonal crystal structure: ThMn12-type (s.g. I4/mmm) HoFe11Ti Tetragonal crystal structure: ThMn12-type (s.g. I4/mmm) Ti stabilizes crystal structure [001] R in bct positie omringing tetragonaal (kristalveld effecten belangrijk  anisotropy) [001] en twee equivalente [100] richtingen (in vlak) [100] [010]

HoFe11Ti: R-T coupling strong!  Ho and Fe sublattice moments remain antiparallel B MFe = 20 mB/f.u. [001] M = 10 mB/f.u. [001] We assume that Ho and Fe sublattice moments remain antiparallel…. MHo = 10 mB/f.u.

Strong coupling  HoFe11Ti excellent system for research on magnetocrystalline anisotropy HoFe11Ti: easy-axis system ( M // [001] ) Tetragonal structure  Eanisotropy = K1sin2q + K2 sin4q + K3 sin6q + K4 sin4qcos4f + K5sin6qcos4f [001] q In general (tetragonal) we can write down the phenomenological expression for anisotropy energy with angles defined. Fi angle in the plane. We have 5 constants, looks a bit much. Normally we need only K1and K2, but we have Ho, Large orbital momentum  at low T we may need all of them Ho has large orbital momentum ==> at low temperature, higher order K play a role [010] f [100]

Magnetic free energy determines equilibrium magnetization F = Eanisotropy + EZeeman = Eanisotropy - B.M Only K1 Higher order K KORT: Minimalizeren van simpele gevallen levert geef aan Als B // makkelijk dan meteen verzadigd als B // moeilijk dan lineair naar verzadiging

Outline Introduction Experiment Results Conclusion

Magnetic-phase transition when field in plane MS Bdem ~ 0.3 T Magnetization B // main directions [110] Ribbe in vlakdiagonaal Faseovergang Different in-plane results for [100] and [110] Magnetic-phase transition when field in plane Different in-plane results!  K4, K5 important

HoFe11Ti : possible 3D-process  3D magnetometry (SQUID, high-field magnet) Requirements: - Pickup coils in three directions - Sample single domain (homogeneous magnetization) In de vorige slide verschillende in-plane results. Betekent dat anisotropy in vlak redelijk groot moet zijn. De Vraag is, toen ik dit zag: loopt de magnetisatie wel keurig in het vlak? Dus onderzoek….. Koppel macroscopisch moment aan microscopische magnetisatie

Sample single domain: projection of B on [001] Als B in vlak, M evenveel recht heeft om naar boven of naar beneden te gaan staan. Deze domeinen blijven bestaan, hoe hoog het veld ook is. Dus moet ik B uit dat vlak halen, zodat er een component is evenwijdig met [001] Demagnetisch veld compenseren. Bdem tegen M // [001] in !!! Als veld groot genoeg, alle M langs + [001] Choose y[001] = 75°  single domain when B ~ 1.1 T

Magnetization for B in (110) plane MS sin 75 Above 1.1 T, sample single domain Transition occurs above 1.1 T

Magnetization for B in (100) plane MS sin 73 Above 1.1 T, sample single domain Transition occurs above 1.1 T

Measurement configuration Mz // B Mx near [001] My  Mx  Mz After measurement: project Mx, My, Mz on [100], [010], [001] 1 oppikspoel (2 keer  separaat voor MZ) Loodrechte 1 spoelsysteem, draai sample. Door draaien sample bepaal Mx en MY. Max in laag veld bepaalt MX Verhaal: in de nesten B rare richting om single domain te maken…. Maar we kunnen na de meting een transformatie doen om Te projecteren op de kristal assen… Prelude: merk op dat voor een 2D proces My nul moet blijven.. (ALTIJD!)

Outline Introduction Experiment Results Conclusion

Magnetization for B in (110) plane My nearly zero Wat zien wij: MZ neemt toe en Mx neemt af dus M draait van [001] naar B My blijft klein, niet nul door (bewuste) misalignment Opmerking over nauwkeurigheid… Hobbels door trillingen van spoelstel…. Mtot raar gedrag => later My nearly zero Conclusion: 2D process

Magnetization for [100] and [010] equal, as expected for B in (110) plane Projection on crystal axes Duidelijk dat moment van [001] initeel wegroteert, vanaf 3T heel duidelijk… 3 compo’s gesommerd => zelfde M totaal (of course) Opmerking er blijkt 110 en 010 zijn praktisch gelijk => conclusie magnetizatie ligt er midden tussen in Magnetization for [100] and [010] equal, as expected

My becomes non-zero!  3D process Magnetization for B in (100) plane Projecties van M op (100) vlak bewegen naar B toe maar M zelf breekt uit. Ziehier, een 3D proces. Mtotaal deukt…. (terloops) al gezien…. Naar ons bekend, is dit de eerste keer dat zoiets zo duidelijk te zien is. My becomes non-zero!  3D process

Magnetization for B in (100) plane Projection on crystal axes Tranfo naar kristal assen. Dus, we kunnen de uit de componenten de richting van M in 15 T bepalen. (later…..) B in (100) plane: 3D process

Transition: first-order (follows from coexistence) En nu gaan we iets over die overgang zeggen. Het blijkt dat…… Er is Mtot iets kwijt… Twee richting even lang moment in kristal  som korter dan wanneer homogeen Schijnbaar exponentiele groei van hoog-veld phase ten koste van laag-veld phase. Er onstaat een tegenwerkende kracht. Die hebben we nog Niet kunnen identificeren… Speculaties, demagnetisatie. Ons gevoel zegt veld te hoog. Ook in andere richting exponentieel Dit is onderwerp discussie/ onderzoek… Transition: first-order (follows from coexistence) Outlook: mechanism for coexistence ?  microscopy

Calculations based on anisotropy parameters* B = 3 T B in (110) plane 2D process First order B = 4 T Abadìa et al., J. Phys.:Condens. Matter 10 (1998), 349 Calculations: M.-H. Yu

B = 5 T B in (100) plane 3D process First order B = 6 T

Conclusions: At the magnetic phase transition, a 3D magnetization process occurs - This phase transition is first order

Some combinations of K1, K2, K3 (..K4, K5) ==> local minima in magnetic energy as a function of angle with [001] ==> First order magnetization process (FOMP)* M // [001] M  [001] * Asti and Bolzoni, J. Magn. Magn. Mater. 20 (1980), 29