Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.

Slides:



Advertisements
Similar presentations
Kondo Physics from a Quantum Information Perspective
Advertisements

From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
www-f1.ijs.si/~bonca LAW3M-05 Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Thermodynamic Properties.
Quantum impurity problems (QIP) and numerical renormalization group (NRG): quick introduction Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia June.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Quantum Critical Behavior of Disordered Itinerant Ferromagnets D. Belitz – University of Oregon, USA T.R. Kirkpatrick – University of Maryland, USA M.T.
Dynamical mean-field theory and the NRG as the impurity solver Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
2D and time dependent DMRG
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Conductance of a spin-1 QD: two-stage Kondo effect Anna Posazhennikova Institut für Theoretische Festkörperphysik, Uni Karlsruhe, Germany Les Houches,
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Quantum charge fluctuation in a superconducting grain Manuel Houzet SPSMS, CEA Grenoble In collaboration with L. Glazman (University of Minnesota) D. Pesin.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Introduction to the Kondo Effect in Mesoscopic Systems.
Theory of the Quantum Mirage*
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Heavy Fermions Student: Leland Harriger Professor: Elbio Dagotto Class: Solid State II, UTK Date: April 23, 2009.
Correlations in quantum dots: How far can analytics go?
Transport properties: conductance and thermopower
Electron coherence in the presence of magnetic impurities
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, J. Stefan Institute, Ljubljana, Slovenia.
KONDO EFFECT IN BILAYER GRAPHENE Diego Mastrogiuseppe, Sergio Ulloa & Nancy Sandler Department of Physics & Astronomy Ohio University, Athens, OH.
Coupled quantum dots: a laboratory for studying quantum impurity physics Rok Žitko SISSA, Trieste, Jožef Stefan Institute, Ljubljana, Slovenia.
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Application of the Cluster Embedding Method to Transport Through Anderson Impurities George Martins Carlos Busser Physics Department Oakland University.
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Neutron Scattering Studies of Tough Quantum Magnetism Problems
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
F.F. Assaad. MPI-Stuttgart. Universität-Stuttgart Numerical approaches to the correlated electron problem: Quantum Monte Carlo.  The Monte.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Discretization, z-averaging, thermodynamics, flow diagrams Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
2LSU(2) regime: competition between Kondo and Intermediate Valence (a numerical collaboration) George Martins Physics Department Oakland University Carlos.
A. Ramšak 1,2 and T. Rejec 2 1 Faculty of Mathematics and Physics, University of Ljubljana 2 J. Stefan Institute, Ljubljana, Slovenia Conductance of nano-systems.
Conductance of nano-systems with interactions coupled
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
A. Ramšak* J. Mravlje R. Žitko J. Bonča* T. Rejec* The Kondo effect in multiple quantum dot systems Department of Physics.
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, (2007) Also:
Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov.
Self-generated electron glasses in frustrated organic crystals Louk Rademaker (Kavli Institute for Theoretical Physics, Santa Barbara) Leiden University,
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Itinerant Ferromagnetism: mechanisms and models
Quantum entanglement, Kondo effect, and electronic transport in
Conductance of nanosystems with interaction
Conductance through coupled quantum dots
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
Conductance through coupled quantum dots
Kondo effect Him Hoang
Department of Physics, Fudan University, Shanghai, China
STM Differential Conductance of a Pair of Magnetic Adatoms
Presentation transcript:

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance through coupled quantum dots

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Collaborators: R. Žitko, J. Stefan Inst., Ljubljana, Slovenia A.Ramšak and T. Rejec, FMF, Physics dept., University of Ljubljana and J. Stefan Inst., Ljubljana, Slovenia

www-f1.ijs.si/~bonca/work.html Cambridge, 2006  Experimental motivation  Single QD: using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime  DQD system: Large t d : Kondo regimes for odd DQD occupancy Small t d : Two-stage Kondo regime  Three QD’s: Good agreement between CPMC and GS. Two regimes  t’’> G : three peaks in G( d ) due to 3 molecular levels  t’’< G : a single peak in G( d ) of width ~ U At t”<<D, two-stage Kodo effect is found with an unstable non- Fermi liquid fixed point  N-dot system in parallel: RKKY interaction  S=N/2 Kondo effect Introduction

www-f1.ijs.si/~bonca/work.html Cambridge, 2006

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Double- and multiple- dot structures Craig et el., Science 304, 565 (2004) Holleitner et el., Science 297, 70 (2002)

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot (Anderson single impurity problem) d

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d Meir-Wingreen, PRL 68, 2512 (1992) e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 U =1

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Quantum Dot d e d +U eded d=e d +U/2 ~ gate voltage U =1 D =U>> G

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Three alternative methods:  Constrained Path Monte Carlo method (CPMC), Zhang, Carlson and Gubernatis, PRL 74,3652 (1995);PRB 59, (1999).  Projection – variational metod (GS), Schonhammer, Z. Phys. B 21, 389 (1975); PRB 13, 4336 (1976), Gunnarson and Shonhammer, PRB 31, 4185 (1985), Rejec and Ramšak, PRB 68, (2003).  Numerical Renormalization Group using Reduced Density Matrix (NRG), Krishna-murthy, Wilkins and Wilson, PRB 21, 1003 (1980); Costi, Hewson and Zlatić, J. Phys.: Condens. Matter 6, 2519, (1994); Hofstetter, PRL 85, 1508 (2000).

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 How to obtain G from GS properties:  CPMC and GS are zero- temperature methods  Ground state energy  Conditions: System is a Fermi liquid N-(noninteracting) sites, N  ∞ G 0 =2e 2 /h Rejec, Ramšak, PRB 68, (2003) ~ ~

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Comparison: CPMC,GS,NRG CPMC, GS-variational, Hartree-Fock: NRG: Meir-Wingreen, PRL 68, 2512 (1992) U<t; Wide-band

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Comparison: CPMC,GS,NRG CPMC, GS-variational, Hartree-Fock: NRG: Meir-Wingreen, PRL 68, 2512 (1992) U>>t; Narrow-band

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Fermi-liquid E( f ) is a universal function of f Fermi-liquid E( f ) is a universal function of f Number of electrons odd Rejec, Ramšak, PRB 68, (2003)

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Zero-bias conductance Rejec, Ramšak, PRB 68, (2003)

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Rejec, Ramšak, PRB 68, (2003) Connection of G with charge stiffness

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 GS variational method Auxiliary Hamitonian Projection operators Variational wavefunctions: E H : the lowest eigenvalue gives the approximation to the GS of H

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 GS variational method – cont. Using Wick’s theorem

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Side-coupled Double Quantum Dot PRB 73, (2006)

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Large t d

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Large t d – Widths of conductance plateaus: Energies on isolated DQD: d1d1 d2d2

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Large t d – Kondo temperatures: Estimating T K using Scrieffer-Wolf:

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Large t d – Kondo temperatures: Estimating T K using Scrieffer-Wolf:

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Large t d – Adding FM coupling E S=1 E S=0 -J ad

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Small t d – Two-stage Kondo effect J eff <T K :Two Kondo temperatures: T K and T K 0 Vojta et al., PRB 65, (2002); Hofstetter, Schoeller, PRL 88, (2002), Cornaglia and Grempel, PRB 71, (2005), Wiel et al., PRL 88, (2002). Two energy scales: J eff =4t d 2 /U, T K

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Small t d – Two-stage Kondo effect J eff <T K :Two Kondo temperatures: T K and T K 0 TKTK TK0TK0 J eff <T K Vojta et al., PRB 65, (2002); Hofstetter, Schoeller, PRL 88, (2002), Cornaglia and Grempel, PRB 71, (2005), Wiel et al., PRL 88, (2002). Two energy scales: J eff =4t d 2 /U, T K

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Small t d – Two-stage Kondo effect J eff >T K J eff w

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Small t d – Two-stage Kondo effect J eff ~T K TKTK w TK0TK0

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Small t d – Two-stage Kondo effect J eff <T K TKTK w TK0TK0

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Small t d – Two-stage Kondo effect J eff <T K ~T TKTK w Experimental evidence Wiel et al., PRL 88, (2002).

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Large t d – Adding FM coupling Two-stage Kondo effect? Voja et al., PRB 65, (2002), Hofstetter, Schoeller, PRL 88, (2002),

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Three coupled quantum dots PRB 73, (2006)  Using CPMC: N CPMC [100,180]  Using GS – variational: N GS [1000,2000]

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Three coupled QDs 12 3 Oguri, Nisikawa,Hewson, cond-mat/

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 Three coupled QDs Non-Fermi-Liquid NRG Calculation Zitko & Bonca Condmat T K (1) T K (2) TDTD T K (1) T K (2) MO AFM TSK NFL MO AFM

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 N - quantum dots PRB 74, (2006) Schrieffer-Wolff Perturbation in V k 4 -th order

www-f1.ijs.si/~bonca/work.html Cambridge, 2006 N - quantum dots  Three different time-scales:  Separation of time-scales:  Different temperature-regimes:

www-f1.ijs.si/~bonca/work.html Cambridge, 2006  Using three different methods: NRG, CPMC and GS – accurate results in a wide parameter regime  DQD system: Large t d : Kondo regimes for odd DQD occupancy Small t d : Two-stage Kondo regime  Three QD’s: Good agreement between CPMC and GS. Different phases exist:  t’’> G : three peaks in G( d ) due to 3 molecular levels  t’’< G : a single peak in G( d ) of width ~ U  Two-stage Kondo regime, when t’’<T K  NFL behavior is found  N-dot system in parallel: RKKY interaction Conclusions