Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,

Slides:



Advertisements
Similar presentations
X-Ray Astronomy Lab X-rays Why look for X-rays? –High temperatures –Atomic lines –Non-thermal processes X-ray detectors X-ray telescopes The Lab.
Advertisements

Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.
LTD12, Paris Microstructured magnetic calorimeter with meander shaped pickup coil A. Burck S. Kempf, S. Schäfer, H. Rotzinger, M. Rodrigues, T. Wolf, A.
X-ray Astronomy Lee Yacobi Selected Topics in Astrophysics July 9.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
CCD-style imaging for the JCMT. SCUBA-2 technology  the ability to construct large format detector arrays  signal readouts that can be multiplexed To.
TES Bolometer Array with SQUID readout for Apex
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
June X-Ray Spectroscopy with Microcalorimeters1 X-Ray Spectrometry with Microcalorimeters.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Gamma Spectroscopy HPT TVAN Technical Training
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
EDS Energy Dispersive Spectroscopy
Rome, January 17th,2006 Flavio Gatti WHIM and Mission Opportunities TES microcalorimeters in the European context Flavio Gatti University and INFN, Genoa.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Netherlands Institute for Space Research Development of TES-microcalorimeter arrays and Frequency Domain Multiplexed read-out Henk Hoevers Division Sensor.
1 Workshop on X-ray Mission Architectural Concepts Linthicum, MD December 14-15, 2011 Enabling Technologies for the High-Resolution Imaging Spectrometer.
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
Recent Progress in Silicon Microcalorimeters and Their Prospects for NeXT (and other missions) Caroline A. Kilbourne NASA Goddard Space Flight Center.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,
Development of CCDs for the SXI We have developed 2 different types of CCDs for the SXI in parallel.. *Advantage =>They are successfully employed for current.
Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
C03 High speed photon number resolving detector with titanium transition edge sensors Daiji Fukuda, Go Fujii, R.M.T. Damayanthi, Akio Yoshizawa, Hidemi.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Cryogenic Detectors and Test Infrastructure at the University of Leicester G.W. Fraser Space Research Centre, Michael Atiyah Building, Department of Physics.
DEAR SDD --> SIDDHARTA
Determination of activity of 51 Cr source on gamma radiation measurements V.V.Gorbachev, V.N.Gavrin, T.V.Ibragimova, A.V.Kalikhov, Yu.M.Malyshkin,A.A.Shikhin.
Page 1 Science Payload and Advanced Concepts Office STJs as Photon Detectors.
SIDDHARTA future precision measurement of kaonic atoms at DA  NE Florin Sirghi LNF SPRING SCHOOL "Bruno Touschek" In Nuclear, Subnuclear and Astroparticle.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group (KNU, Kobe, Niigata, Shinshu, ICEPP.
Precision Drift Chambers for the ATLAS Muon Spectrometer
Laboratory Astrophysics using an Engineering Model XRS Microcalorimeter Array NASA/GSFCLLNL. F. Scott PorterPeter Beiersdorfer Keith GendreauGreg Brown.
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
1 Cost Room Availability Passive Shielding Detector spheres for accelerators Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh).
1 MARE: Status and Perspectives Flavio Gatti University and INFN of Genoa on behalf of the MARE Collaboration NUMASS2010 INT Seattle, Feb. 9, 2010.
Active Pixel Sensors in Medical and Biologi The application of Large Area Active Pixel Sensor (LAS) to high resolution Nuclear Medicine imaging Bob Ott.
SiPM from ST-Microelectronics Nepomuk Otte & Hector Romo Santa Cruz Institute for Particle Physics University of California, Santa Cruz
Precision spectroscopy of HCI in a reaction microscope Max-Planck-Institut für Kernphysik, Heidelberg C. Dimopoulou HITRAP Meeting, May 2005, Munich.
Key experiment planned at HITRAP Precision spectroscopy of singly and doubly-excited states of slow HCI Max- Planck-Institut für Kernphysik, Heidelberg.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
ICT 1 SINTEF Edge-On Sensor with Active Edge Fabricated by 3D-Technology T. E. Hansen 1), N. Ahmed 1), A. Ferber 2) 1) SINTEF MiNaLab 2) SINTEF Optical.
Conclusions References 1. A. Galimberti et al., Nucl. Instrum. Meth. A 477, (2002). 2. F. Capotondi et al., Thin Solid Films 484, (2005).
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
Microwave SQUID multiplexer for the readout of large MMC arrays
Cryogenic Particle Detectors in Rare event Searches
Triple GEM detectors : measurements of stray neutron.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
Irina Bavykina, MPI f. Physik
On behalf of the GECAM group
Radiation Detection via Transition Edge Sensor (TES)
MARE (microcalorimeter array for a rhenium experiment)
The MPPC Study for the GLD Calorimeter Readout
Presentation transcript:

Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger, E. Pavlov, P. Ranitzsch, M. Wegner, V. Wißdorf, T. Wolf, L. Gastaldo, A. Fleischmann, C. Enss Kirchhoff-Institute for Physics Heidelberg University

1 x 8 pixel array for X-rays up to 20 keV 250  m 5  m X-ray absorber: Electrodeposited Au Stems: Electrodeposited Au Temperature sensor: Co-sputtered Au:Er 300 ppm Superconducting pickup coil: Sputtered Nb SQUID magnetometer

1 x 8 pixel array for X-rays up to 20 keV

@ 0 keV:  EFWHM=3.0 eV 55 Mn characterization measurements Counts / 0.3 eV Energy [keV] Counts / 0.3 eV Energy [keV] Baseline Compared to expected energy resolution  E FWHM =2.6 eV slightly degraded due to untriggered small 6 keV:  EFWHM=3.4 eV

55 Mn characterization measurements Measured energy [keV] Energy [keV] Difference [keV] Non-linearity ~ 0.5% Quadratic deviation As expected from theory Flux change [ Φ 0 ] Time [  s] Rise time ~80 ns Given by Korringa relation of Er in Au

Cross talk Electromagnetic and thermal ≈ 10-4 in gradiometric setup Only relevant if  EFWHM < 1eV Cross talk x 10 -4

X-ray spectroscopy at an EBIT at the MPIK* detector ADR EBIT * Max-Planck-Institute for Nuclear Physics, Heidelberg

Superconducting Nb grid Magnetic Shielding 7 mm Nb cup attached to 4K plattform Microfabricated Spacing 100  m Width 5  m Thickness 3  m Trancparency ~ 90%

Magnetic Shielding Al cup attached to detector plattform Mechanical noise supressed Without Al shield With Al shield

X-ray spectroscopy at an EBIT at the MPIK Transitions in Sc-like (W 53+ )... Ni-like (W 46+ ) tungsten electron energy (eV) photon energy (eV) S. Georgi, Max-Planck-Institute for Nuclear Physics, Heidelberg, 2013

Detecting 60 0 keV:  EFWHM= 1.5 eV Non-linearity: keV 6.4  0

1 x 8 pixel array for X-rays up to 200 keV keV:  EFWHM=40 eV 2000  m 500  m 140  m In perfect agreement with expected resolution

Introduce stems as thermal bottle neck 1 x 8 pixel array for X-rays up to 200 keV  E FWHM =60 eV SQUID Au:Er sensor Au absorber 1st Nb layer Massive absorber on 7  m thick stems MeasuredSimulated 60 keV:  EFWHM=60 eV Degradation due to position dependent pulse shape

Towards a 2d-array 7 mm 1 mm 2 mm 8 mm Planned detector geometries Detector will be mounted on the side arm of a dry dilution fridge

Summary Design for low-energy X-rays  FWHM = keV Magnetic shielding with microstructured Nb grid Non-linearity 60 keV Design for high-energy X-rays  FWHM = keV  FWHM = keV Introduce stems to prevent position dependent pulse shape Towards a 2d array Different geometries Covering a large energy range Mounted on a 40 cm long side arm

Applications  maXs: X-ray spectroscopy atomic physics astronomy  X-ray imaging large MMC arrays microwave SQUID multiplexing  Detection of molecular fragments  Radiation standards for metrology  Neutrino mass experiments β decay of 187 Re (MARE) EC of 163 Ho β β decay of 100 Mo (AMoRE) U 91+ Advantages of MMCs  High energy resolution  Large energy bandwidth  Quantum efficiency up to 100%  Excellent linearity  Fast signal rise time

maXs (Micro-Calorimeter Arrays for High Resolution X-Ray Spectroscopy) e.g. at Gas-Jet-Target behind HITRAP at GSI/FAIR 2d detector array

Towards a 2d-array For X-rays up to 100 keV 8 x 8 pixel array Absorber volume 500 x 500 x 30 µm 3 4 mm Future geometry Stopping power keV keV keV Expected energy resolution  EFWHM=6 20mK 7 mm 48 large area absorbers For high-energy X-rays 1 x 1 mm 2 detection area 16 high-resolution absorbers For low-energy X-rays In center of the array 1 mm

Towards a 2d-array For X-rays up to 100 keV 8 x 8 pixel array Absorber volume 500 x 500 x 15 µm 3 4 mm Alternative geometrie Stopping power keV keV keV Expected energy resolution  EFWHM=10 eV 7 mm 49 large area absorbers For high-energy X-rays 16 high-resolution absorbers In center of the array For low-energy X-rays 1 mm Detector will be placed on the side arm of a dry dillution fridge

55 Mn characterization measurements Expected energy resolution  E FWHM =2.48eV Measured energy resolution Baseline:  E FWHM 6 keV:  E FWHM =3.4eV Non-linearity ~ 0.5% Rise time ~80 ns

Crosstalk maXs-200 Non-gradiometric setupGradiometric setup überprüfen Slow rise  Thermal cross talk ≈ 0.01% in gradiometric setup  Only relevant if  E FWHM < 1eV