R.S. Orr 2009 TRIUMF Summer Institute Hadronic Calorimeters Strong (nuclear) interaction cascade Similar to EM shower hadronic interaction length Energy Resolution shower fluctuations leakage of energy hadronic calorimeter nearly always sampling calorimeters invisible energy loss mechanisms Shower length R.S. Orr 2009 TRIUMF Summer Institute 1
R.S. Orr 2009 TRIUMF Summer Institute Sampling Calorimeter R.S. Orr 2009 TRIUMF Summer Institute 2
R.S. Orr 2009 TRIUMF Summer Institute Hadronic Lateral Shower Profile Hadronic shower much broader than EM Fe Mean hadronic versus MCS Fe R.S. Orr 2009 TRIUMF Summer Institute 3
R.S. Orr 2009 TRIUMF Summer Institute Hadronic Shower Longitudinal Development ZEUS Uranium/Scint R.S. Orr 2009 TRIUMF Summer Institute 4
R.S. Orr 2009 TRIUMF Summer Institute Lateral Scaling with Material 90% containment does not scale core scales R.S. Orr 2009 TRIUMF Summer Institute 5
R.S. Orr 2009 TRIUMF Summer Institute Calorimeter Energy Resolution sampling and shower fluctuations energy number of samples energy deposited in a sampling step stochastic term R.S. Orr 2009 TRIUMF Summer Institute 6
R.S. Orr 2009 TRIUMF Summer Institute Calorimeter Energy Resolution e.g. # of photo-electrons in PM, ion pairs in liquid argon counting statics in sensor system mean # of photo-electrons in PM per unit of incident energy this term is usually negligible shower leakage fluctuations – make calorimeter as deep as $$ allow R.S. Orr 2009 TRIUMF Summer Institute 7
R.S. Orr 2009 TRIUMF Summer Institute Calorimeter Energy Resolution important for low level signal liquid argon electronics detector capacitance noise - detector or electronics N channels with some intrinsic noise noise (energy) deposited energy behaviour increases with number of channels summed over R.S. Orr 2009 TRIUMF Summer Institute 8
R.S. Orr 2009 TRIUMF Summer Institute Calorimeter Energy Resolution inter - calibration uncertainty of channels constant in E fractional channel to channel gain uncertainty spatial in-homogeneity of detector energy response dead space temperature variation radiation damage all these influence spatial variation of effective energy response constant R.S. Orr 2009 TRIUMF Summer Institute 9
R.S. Orr 2009 TRIUMF Summer Institute Calorimeter non-uniformity R.S. Orr 2009 TRIUMF Summer Institute 10
R.S. Orr 2009 TRIUMF Summer Institute Generic Detector Layers of Detector Systems around Collision Point R.S. Orr 2009 TRIUMF Summer Institute 11
R.S. Orr 2009 TRIUMF Summer Institute Semi-empirical model of hadron shower development hadronic part electromagnetic part radiation length interaction length - significant amount of material in front of calorimeter (magnet coil etc.) R.S. Orr 2009 TRIUMF Summer Institute 12
R.S. Orr 2009 TRIUMF Summer Institute More Rules of Thumb for the Hobbyist Mixtures in sampling calorimeters Shower maximum active + passive material 95% Longitudinal containment 95% Lateral containment R.S. Orr 2009 TRIUMF Summer Institute 13
Typical Calorimeter Resolutions Homogeneous EM (crystal, glass) CLEO, Crystal Ball, Belle, CMS..... Sampling EM (Pb/Scint, Pb/LAr) CDF, ZEUS, ALEPH, ATLAS..... Non-compensating HAD (Fe/Scint, Fe/LAr) CDF,ATLAS,H1, LEP = everyone Compensating HAD (DU/Scint) ZEUS, HELIOS R.S. Orr 2009 TRIUMF Summer Institute 14
R.S. Orr 2009 TRIUMF Summer Institute Invisible Energy in Hadronic Showers R.S. Orr 2009 TRIUMF Summer Institute 15
R.S. Orr 2009 TRIUMF Summer Institute Difference in Response to Electrons and Hadrons R.S. Orr 2009 TRIUMF Summer Institute 16
R.S. Orr 2009 TRIUMF Summer Institute Effect of e/h on Energy Resolution Resolution tail Fe/Scint DU/Scint R.S. Orr 2009 TRIUMF Summer Institute 17
R.S. Orr 2009 TRIUMF Summer Institute Effect of e/h on Linearity Fe/Scint DU/Scint R.S. Orr 2009 TRIUMF Summer Institute 18
R.S. Orr 2009 TRIUMF Summer Institute 19
R.S. Orr 2009 TRIUMF Summer Institute Weighting to Correct for e/h Energy resolution does not improve Weight down EM part of shower tune R.S. Orr 2009 TRIUMF Summer Institute 20
R.S. Orr 2009 TRIUMF Summer Institute Jet Energy Resolution Jet-jet Mass Resolution Fluctuations between EM and Hadronic component in jets will degrade the energy resolution for jets Effects other than e/h dominate the 2-jet mass resoluton R.S. Orr 2009 TRIUMF Summer Institute 21
R.S. Orr 2009 TRIUMF Summer Institute Jet-Jet Mass Resolutions R.S. Orr 2009 TRIUMF Summer Institute 22
R.S. Orr 2009 TRIUMF Summer Institute Conceptual Readout Schemes R.S. Orr 2009 TRIUMF Summer Institute 23
R.S. Orr 2009 TRIUMF Summer Institute ZEUS Forward Calorimeter R.S. Orr 2009 TRIUMF Summer Institute 24
R.S. Orr 2009 TRIUMF Summer Institute 25
R.S. Orr 2009 TRIUMF Summer Institute Generic Detector Layers of Detector Systems around Collision Point R.S. Orr 2009 TRIUMF Summer Institute 26
LAr Calorimetry Five different detector technologies Calorimetry coverage to SM Higgs Discovery Potential EM Calorimeter Hadronic & Forward Calorimeters EM Calorimeter WW Fusion Tag jets in Forward Cal 27
LAr Calorimeter Technology Overview Design Goals Technology EM Calorimeters ( ) and Presampler ( ) Hadronic Endcap ( ) Forward Calorimeter ( ) Lead/Copper-Kapton/Liquid Argon Accordion Structure Copper/Copper-Kapton/Liquid Argon Plate Structure Tungsten/Copper/Liquid Argon Paraxial Rod Structure 28
LAr and Tile Calorimeters Tile barrel Tile extended barrel LAr hadronic end-cap (HEC) LAr EM end-cap (EMEC) LAr EM barrel LAr forward calorimeter (FCAL) 29
Electromagnetic Barrel Barrel Module Schematic with presampler Half Barrel Assembly 2x16 modules I.R/O.R 1470/2000 mm 22 - 33 3 longitudinal samples presampler 64 gaps /module 2.1 mm gap 2x3100 mm long R.S. Orr 2009 TRIUMF Summer Institute 30
R.S. Orr 2009 TRIUMF Summer Institute Electromagnetic Endcap 2x8 modules Diam. 4000 mm 22 - 37 3 longitudinal samples Front sampling of 6 for , - strips. 96 gaps /module outer wheel 32 gaps/module inner wheel 2.8 - 0.9 mm gap outer 3.1-1.8 mm inner R.S. Orr 2009 TRIUMF Summer Institute 31
R.S. Orr 2009 TRIUMF Summer Institute Accordion Structure Pb Absorber Honeycomb spacer & Cu/Kapton electrode R.S. Orr 2009 TRIUMF Summer Institute 32
R.S. Orr 2009 TRIUMF Summer Institute Prototype of EM endcap Detail of Kaptons R.S. Orr 2009 TRIUMF Summer Institute 33
R.S. Orr 2009 TRIUMF Summer Institute ATLAS FCAL R.S. Orr 2009 TRIUMF Summer Institute 34
Pictures of assembly process
LAr Forward Calorimeters FCAL C assembly into tube – Fall 2003 36
Liquid Argon Gap Tungsten Rod
R.S. Orr 2009 TRIUMF Summer Institute ATLAS HEC Structure R.S. Orr 2009 TRIUMF Summer Institute 38
Transformer matching Does not work in magnetic field. Long readout cables slow down signal Large capacitance, large noise EST Works in magnetic field Low capacitance
Hadronic Endcap Calorimeter (HEC) Front Wheel Rear Wheel Wheel Assembly Composed of 2 wheels per end Front wheel: 67 t 25 mm Cu plates Back wheel: 90 t 50 mm Cu plates 40
Oct 2002 41
42
Electromagnetic Endcap 43
Hadronic Endcap 44
HEC – FCAL Assembly 45
Test Beam Single Particle Energy Resolution Noise subtracted energy resolution
Noise Level in LAr Calorimeters Since the FCal is in the very forward region, these noise levels are OK
Signal Shape before startup
Lar Endcap Installed in ATLAS 49