Rotational and Vibrational Energy Transfer from the First Overtone Stretch of Acetylene Keith Freel Jiande Han Michael C. Heaven
Purpose: Optically Pumped Molecular Gas Lasers R 3μmμm 80 cm 2 m CaF 2 window detector/ spectrometer R~ 3μmμm C 2 H 2, 2 Torr ns OPO R (7) ( ) 3 μm A.V.V. Nampoothiri, A Ratanavis, N. Campbell, and W. Rudolph. Optics Express, 18(3), 2010, p1946.
Purpose: Optically Pumped Molecular Gas Lasers R 3μmμm 80 cm 2 m CaF 2 window detector/ spectrometer R~ 3μmμm C 2 H 2, 2 Torr ns OPO R (7) ( ) 3 μm A.V.V. Nampoothiri, A Ratanavis, N. Campbell, and W. Rudolph. Optics Express, 18(3), 2010, p )Total removal from rotational levels 2)Rotational Energy Transfer 3)Vibrational Energy Transfer To what states? How fast?
IR-UV-DR (Time Resolved) Spectroscopy Three types of experiments 1.UV scan 2.IR scan 3.Time delay scan (00000) 00 X + g (10100) 00 Direct Excitation: (V”, J”, K”) (V,J,K) V’, J’, K’ Indirect Transfer: (V”, J”, K”) (V,J,K) init (V,J,K) final (V’,J’,K’) A 1 A u (v 3 ’ + v 5 ’) LIF (v 1 v 2 v 3 v 4 v 5 ) l > 5 ns
Spectroscopy of Acetylene ” 1 ” 2 ” 3 ” 4 ” 5 +g+g +g+g +u+u gg uu Ground State X + g (D ∞h ) First Excited State A 1 u (C 2h ) ' 1 CH sym str ' 2 CC stretch ' 3 trans bend ’ 4 torsion ' 5 CH anti str ‘ 6 cis bend agag agag agag auau bubu bubu cm -1 Watson. J Molec. Spec. 95, 1982, 101. Merer. Mol. Phys. 101(4-5), 2003, cm cm cm cm cm cm cm cm cm cm -1 Tobiason. J. Chem. Phys. 99(2), 1993, 928. Herman et al. J. Phys. Chem. Ref. Data, Vol. 32, No. 3, Also MF07.
Experimental Setup LIF Flow Cell PMT Excimer pumped Dye Laser with Doubling Crystal Nd:Yag pumped OPO/OPA Computer Boxcar with Preamp Optics/Filters Pump 1.5 m Probe 250 nm Delay Generator ~ 0.1 Torr C 2 H 2
1. UV Scan – 20 ns delay (00000) 00 X + g (10100) 00 A 1 A u (v 3 ’ + v 5 ’) J=4 J=14 J=12 J=10 J=8 J=6 nm (Simulation - PGopher) P R Q(6)Q(10) Q(14) R-branch P(7) P(11) P(9)
J=4 J=14 J=12 J=10 J=8 J=6 nm (Simulation - PGopher) P R Q(6)Q(10) Q(14) R-branch P(6) P(10) P(8) 1. UV Scan – 220 ns delay (00000) 00 X + g (10100) 00 A 1 A u (v 3 ’ + v 5 ’)
Density Of States cm -1 VibrationalRotational 0.3 states/cm -1 > 6 states/cm -1 Herman et al. J. Phys. Chem. Ref. Data, Vol. 32, No. 3,
Vibrational Energy Transfer nm (UV Scan) (00000) 00 X + g (10100) A 1 A u (v 1 ’ + v 3 ’) a = c 1 |00200> - c 2 |11020> b = c 2 |00200> + c 1 |11020> A-X b A-X a Band heads Obs. (Odd J) Pumped J=8 Calc. PGopher X a + 41 cm X b + 53 cm -1 Herman et al. J. Phys. Chem. Ref. Data, Vol. 32, No. 3, Merer. Mol. Phys. 101(4-5), 2003, 663. g u g g
2. IR Scan Experiment (00000) 00 X + g (10100) 00 A 1 A u (v 3 ’ + v 5 ’) IR Scan UV Fixed R(13) P(15)
3. Time Scan Total Removal From (J=2 – J=16) ns JK i / (cm 3 s -1 ) +/- 0.3 Crim 27.6NA 47.9NA 66.5NA I(t) = A exp (-K i nt) J. D. Tobiason, Ph.D. thesis, University of Wisconsin-Madison, 1992.
RET kinetics – measuring k if Jk i J=14 / (cm 3 s -1 ) +/ (Total Removal) N f (t)/No = I f (t) = (k if /K i )[1-exp(-K i nt)] K i = total removal rate from i k if = state to state removal rate from i to f (ns)
and 220 ns UV Scans with Simulation for assignment Background Considerations Q(16) Q(12) Q(8) Q(20)
20 and 220 ns UV Scans with Simulation for assignment Background Considerations Q(16) Q(12) Q(8) Q(20) Payne. Z. Phys. Chem. 219, (2005) 601–633 Payne. J. Phys. Chem. A, Vol. 110(9), (2006) 3307
Conclusions IR-UV DR spectroscopy has been used to identify VET and RET Total removal rates were measured from the state and match previous measurements. VET to the 00200/11020 diad was observed. Measured State-to-State RET rates are too large due to complex ET pathways.
Thank You For Listening Advisor: Michael Heaven Postdoc Fellow: Jiande Han Group Members: Ivan Antinov, Beau Barker, Md. Humayun Kabir