EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010

Slides:



Advertisements
Similar presentations
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
Spring 2007EE130 Lecture 24, Slide 1 Lecture #24 HW#8 ANNOUNCEMENTS Start Problem 4 early! Note that Problem 3f has been revised OUTLINE The Bipolar Junction.
Spring 2007EE130 Lecture 22, Slide 1 Lecture #22 OUTLINE The Bipolar Junction Transistor – Introduction Reading: Chapter 10.
Slide 8-1 Chapter 8 Bipolar Junction Transistors Since 1970, the high density and low-power advantage of the MOS technology steadily eroded the BJT’s early.
Lecture #25 OUTLINE BJT: Deviations from the Ideal
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
Chapter 6: Bipolar Junction Transistors
Modelling & Simulation of Semiconductor Devices
Bipolar Junction Transistors
EXAMPLE 10.1 OBJECTIVE Solution
EE130/230A Discussion 15 Peng Zheng 1. Early Voltage, V A Output resistance: A large V A (i.e. a large r o ) is desirable IB3IB3 ICIC V EC 0 IB2IB2 IB1IB1.
ECE 7366 Advanced Process Integration Set 10a: The Bipolar Transistor - Basics Dr. Wanda Wosik Text Book: B. El-Karek, “Silicon Devices and Process Integration”
EE 5340 Semiconductor Device Theory Lecture 13 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Breakdown mechanisms Non-ideal effects Gummel plot & Gummel numbers Modern BJT structures Base transit time Reading:
L30 01May031 Semiconductor Device Modeling and Characterization EE5342, Lecture 30 Spring 2003 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
EE130/230A Discussion 14 Peng Zheng.
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
L25 04/16/021 EE Semiconductor Electronics Design Project Spring Lecture 26 Professor Ronald L. Carter
Transistor (BJT). Introduction BJT (Bipolar Junction Transistor) Vaccum tubes It comes because it is most advantageous in amplification Why it is called.
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 16 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Lecture 26 OUTLINE The BJT (cont’d) Ideal transistor analysis
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 17 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 20 - Fall 2010
Semiconductor Device Modeling & Characterization Lecture 23
Professor Ronald L. Carter
Presentation transcript:

EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc

Non-ideal effects in BJTs Base-width modulation (FA: xB changes with changes in VBC) Current crowding in 2-dim base High-level injection (minority carriers g.t. dopant - especially in the base). Emitter Bandgap narrowing (NE ~ density of states at cond. band. edge) Junction breakdown at BC junction L22 08Nov2010

Base-width modulation (Early Effect, cont.) Fig 9.16* L22 08Nov2010

Emitter current crowding in base Fig 9.21* L22 08Nov2010

Interdigitated base fixes emitter crowding Fig 9.23* L22 08Nov2010

Base region high- level injection (npn) L22 08Nov2010

Effect of HLI in npn base region Fig 9.17* L22 08Nov2010

Effect of HLI in npn base region (cont) L22 08Nov2010

Effect of HLI in npn base region (cont) L22 08Nov2010

Emitter region high- level injection (npn) L22 08Nov2010

Effect of HLI in npn emitter region L22 08Nov2010

Effect of HLI in npn base region Figs 9.18 and 9.19* L22 08Nov2010

Bandgap narrowing effects Fig 9.20* Replaces ni2 throughout L22 08Nov2010

Junction breakdown at BC junction Reach-through or punch-through when WCB and/or WEB become large enough to reduce xB to zero Avalanche breakdown when Emax at EB junction or CB junction reaches Ecrit. L22 08Nov2010

Hybrid-pi circuit model Adapted from linking current version of E-M model with parasitic Rs and CSubstr C-E branch is linking current B-E branch is the reduced B-E diode with diffusion (for and rev) resistance and capacitance and junction cap. B-C branch is the reduced B-C diode with diffusion (for and rev) resistance and capacitance and junction cap. L22 08Nov2010

Hybrid-pi Circuit model Fig 9.33* L22 08Nov2010

Gummel-Poon Static npn Circuit Model B RBB ILC IBR ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB B’ ILE IBF RE E L22 08Nov2010

BJT Characterization Forward Gummel iC RC iB RE RB vBEx vBC vBE + - vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB L22 08Nov2010

Ideal F-G Data iC and iB (A) vs. vBE (V) N = 1  1/slope = 59.5 mV/dec L22 08Nov2010

References * Semiconductor Physics and Devices, 2nd ed., by Neamen, Irwin, Boston, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Muller and Kamins, John Wiley, New York, 1986. L22 08Nov2010