Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

PID v2 and v4 from Au+Au Collisions at √sNN = 200 GeV at RHIC
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Physics Results of the NA49 exp. on Nucleus – Nucleus Collisions at SPS Energies P. Christakoglou, A. Petridis, M. Vassiliou Athens University HEP2006,
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Quantum Opacity, RHIC HBT Puzzle, and the Chiral Phase Transition RHIC Physics, HBT and RHIC HBT Puzzle Quantum mech. treatment of optical potential, U.
Results from PHENIX on deuteron and anti- deuteron production in Au+Au collisions at RHIC Joakim Nystrand University of Bergen for the PHENIX Collaboration.
1 Baryonic Resonance Why resonances and why  * ? How do we search for them ? What did we learn so far? What else can we do in the.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
1 Systematic studies of freeze-out source size in relativistic heavy-ion collisions by RHIC-PHENIX Akitomo Enokizono Lawrence Livermore National Laboratory.
STAR Looking Through the “Veil of Hadronization”: Pion Entropy & PSD at RHIC John G. Cramer Department of Physics University of Washington, Seattle, WA,
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Collision system dependence of 3-D Gaussian source size measured by RHIC-PHENIX Akitomo Enokizono Lawrence Livermore National Laboratory 23 rd Winter Workshop.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net.
Masashi Kaneta, LBNL Masashi Kaneta for the STAR collaboration Lawrence Berkeley National Lab. First results from STAR experiment at RHIC - Soft hadron.
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
QM’05 Budapest, HungaryHiroshi Masui (Univ. of Tsukuba) 1 Anisotropic Flow in  s NN = 200 GeV Cu+Cu and Au+Au collisions at RHIC - PHENIX Hiroshi Masui.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
In-Kwon YOO Pusan National University Busan, Republic of KOREA SPS Results Review.
Matter System Size and Energy Dependence of Strangeness Production Sevil Salur Yale University for the STAR Collaboration.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Hadron emission source functions measured by PHENIX Workshop on Particle Correlations and Fluctuations The University of Tokyo, Hongo, Japan, September.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
Measurement of J/  -> e + e - and  C -> J/  +   in dAu collisions at PHENIX/RHIC A. Lebedev, ISU 1 Fall 2003 DNP Meeting Alexandre Lebedev, Iowa State.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Inha Nuclear Physics Group Quantum Opacity and Refractivity in HBT Puzzle Jin-Hee Yoon Dept. of Physics, Inha University, Korea John G. Cramer,
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
1 Charged hadron production at large transverse momentum in d+Au and Au+Au collisions at  s=200 GeV Abstract. The suppression of hadron yields with high.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Christina Markert Hot Quarks, Sardinia, Mai Christina Markert Kent State University Motivation Resonance in hadronic phase Time R AA and R dAu Elliptic.
24 Nov 2006 Kentaro MIKI University of Tsukuba “electron / photon flow” Elliptic flow measurement of direct photon in √s NN =200GeV Au+Au collisions at.
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Systematic Study of Elliptic Flow at RHIC Maya SHIMOMURA University of Tsukuba ATHIC 2008 University of Tsukuba, Japan October 13-15, 2008.
BNL/ Tatsuya CHUJO JPS RHIC symposium, Chuo Univ., Tokyo Hadron Production at RHIC-PHENIX Tatsuya Chujo (BNL) for the PHENIX Collaboration.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Measurement of Azimuthal Anisotropy for High p T Charged Hadrons at RHIC-PHENIX The azimuthal anisotropy of particle production in non-central collisions.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Kirill Filimonov, ISMD 2002, Alushta 1 Kirill Filimonov Lawrence Berkeley National Laboratory Anisotropy and high p T hadrons in Au+Au collisions at RHIC.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
Christina Markert 22 nd Winter Workshop, San Diego, March Christina Markert Kent State University Resonance Production in RHIC collisions Motivation.
24 June 2007 Strangeness in Quark Matter 2007 STAR 2S0Q0M72S0Q0M7 Strangeness and bulk freeze- out properties at RHIC Aneta Iordanova.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
Systematic measurement of light vector mesons at RHIC-PHNEIX Yoshihide Nakamiya Hiroshima University, Japan (for the PHENIX Collaboration) Quark Matter.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
Analysis of the anomalous tail of pion production in Au+Au collisions as measured by the PHENIX experiment at RHIC M. Nagy 1, M. Csanád 1, T. Csörgő 2.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Duke University 野中 千穂 Hadron production in heavy ion collision: Fragmentation and recombination in Collaboration with R. J. Fries (Duke), B. Muller (Duke),
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
The Study of Elliptic Flow for PID Hadron at RHIC-PHENIX
Identified Particle Production at High Transverse Momentum at RHIC
Dalian University of Technology, Dalian, China
Presentation transcript:

Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics – Introduction Data taking – PHENIX Zero Degree Calorimeter Actuation Software development Data analysis – Correlation functions Methods of the calculation Status Model building – Buda-Lund hydro model Calculation of observables Comparing the results to the data

Csanád Máté 2 The Big Bang Early universum: hot, expanding system Quark matter, Quark Gluon Plasma Nucleon freeze-out

Csanád Máté 3 The Little Bang Heavy ion collisions: hot, expanding system Hot and dense enough? New- old matter? Melting the nucleons Quark deconfinement Image: water from ice This all is possible with high energy collisions (?)

Csanád Máté 4 RHIC and PHENIX

Csanád Máté 5 The Zero Degree Calorimeter The interaction region and the ZDCs ZDC from the front

Csanád Máté 6 Online monitoring

Csanád Máté 7 Three-particle correlation function Experimental definition:, where invariant triplet momentum actual triplet distribution (three particles from the same event) background triplet distribution (arbitrary particles)

Csanád Máté 8 Theoretical aspects Theoretical definition: Parts of the source core / halo partially coherent / incoherent The correlation function at zero relative momenta

Csanád Máté 9 Goals Measuring the correlation function Core-halo ratio Both C 3 and C 2 is needed Thermal models are acceptable? Ratio of partially coherent fraction Jets Bose-Einstein condensate Fireball

Csanád Máté 10 Event selection, applied cuts Start from AuAu run2_v03_burn1/CNT, only MinBias events ~17000 files every second is different Have to reproduce the two particle results  same cuts as ppg021 Needed variables

Csanád Máté 11 One track cuts Momentum cuts Other cuts Particle identification: Pions: Kaons: Protons:

Csanád Máté 12 One track cuts Mass versus charge over momentum:

Csanád Máté 13 Two track cuts EMC, radius: DCH, angle and zed ~5% of the pairs and triplets are cut this way

Csanád Máté 14 Correlation functions of pions Two-particle correlation functions: Three-particle correlation functions: (+,+)  (–,–)  (+,+,+)  (–,–, –) 

Csanád Máté 15 Correlation functions of kaons Two-particle correlation functions: Three-particle correlation functions: (+,+)  (–,–)  (+,+,+)  (–,–, –) 

Csanád Máté 16 Correlation functions of protons Two-particle correlation functions: Three-particle correlation functions: (+,+)  (–,–)  (+,+,+)  (–,–,–) 

Csanád Máté 17 Summary, plans Correlation function at high relative momenta ~ 1 Enhancement at small relative momenta Few entries at small momenta  low statistics Need of enhancement in statistics  to use more events To improve on cuts Make corrections Coulomb correction Solve the two-particle Schrödinger-equation Symmetrization  Three-particle wave-function Devide through plain-wave approximation (Alt, Csörgő, Lörstad, Schmidt-Sorensen, hep-ph/ )

Csanád Máté 18 Principles of Buda-Lund hydro Analytic expressions for all observables Symmetric, 3D expansion Local thermalization Known hydro solutions in the nonrelativistic limit Core-Halo picture Core: hydrodynamical evolution Halo: decay products of long lived resonances

Csanád Máté 19 Nonrelativistic hydrodynamics Equations of nonrel hydro Equation of state Scaling variable X, Y and Z: characteristic scales, depend on (proper)time

Csanád Máté 20 A nonrelativistic solution A group of nonrelativistic solutions (hep-ph/ ):  ( s ),  ( s ) : scaling functions This is a solution, if for the scales:  ( s ) arbitrary, eg.  constant, then  ( s ) exponential, or: Buda-Lund Zimányi-Bondorf-Garpman

Csanád Máté 21 Numeric results Propagate the hydro solution in time:

Csanád Máté 22 A relativistic solution Relativistic hydro: and A group of general solutions (nucl-th/ ): Overcomes two shortcomings of Bjorken’s solution: Rapidity distribution Transverse flow Hubble flow  lack of acceleration

Csanád Máté 23 The emission function The phase-space distribution looks like Maxwell-Boltzman, for sake of simplicity with the constant: Consider the collisionless Boltzmann-equation Calculates the source of a given phase-space distribution: Emission function in the simplest case (instant. source, at t=t 0 ):

Csanád Máté 24 Observables from Buda-Lund hydro Core-halo correction: One-particle spectrum with core-halo correction: Two-particle correlation function: Flow coefficients:

Csanád Máté 25 The generalized Buda-Lund model The original model was developed for axial symmetry only  central collisions In the most general hydrodynamical form: ‘Inspired by’ nonrelativistic solutions Have to assume special shapes: Generalized Cooper-Frye prefactor: and Four-velocity distribution: Temperature: Fugacity:

Csanád Máté 26 Az invariáns impulzus-eloszlás A nyeregpont-módszerrel a következőt kapjuk: Az átlagos energia és térfogat: és Koordináta-transzformáció szükséges: A táguló rendszer koordinátái  Mérés koordinátái Transzverz impulzus iránya Impulzusmomentum miatt kis forgás

Csanád Máté 27 The saddlepoint approximation A good approximation for the product of a narrow Gaussian-like function and a broad distribution: Exact for convolution of Gaussians, good for narrow distributions, where a parameter controls the width The saddlepoint can be computed from This method can be generalized for more dimensions

Csanád Máté 28 Correlation function and radii The correlation function: The radii are in the simplest case, and in the B-P system: Azimuthal depencence appears

Csanád Máté 29 Some analytic results Distribution widths with Slopes, effective temperatures Flow coefficients with

Csanád Máté 30 Buda-Lund fits to NA44/49 data A. Ster, T. Cs, B. Lörstad, hep-ph/

Csanád Máté 31 Buda-Lund fits to NA22 h + p data N. M. Agababyan et al, EHS/NA22, PLB 422 (1998) 395 T. Csörgő, hep-ph/ , Heavy Ion Phys. 15 (2002) 1-80

Csanád Máté 32 Buda-Lund fits to 130 GeV RHIC data M. Csanád, T. Csörgő, B. Lörstad, A. Ster, nucl-th/ , ISMD03

Csanád Máté 33 Buda-Lund fits to 200 GeV RHIC data M. Csanád, T. Csörgő, B. Lörstad, A. Ster, nucl-th/ , QM04

Csanád Máté 34 Investigation of new data Description of the rapidity dependence of the elliptic flow, little underestimated Transverse momentum dependence OK Modification of parameters, new fits needed see nucl-th/ and nucl-th/

Csanád Máté 35 Fit results, comparing RHIC and SPS

Csanád Máté 36 Discussion of fit results RHIC: high central temperature T RHIC  200MeV, T crit  160MeV, T SPS  140 MeV Significantly higher (5  ), than the critical High temperature inhomogeneity Temperature of the center much higher, than that of the surface This gives a solution for the RHIC ‘‘HBT puzzle”. Almost sudden freeze-out Short freeze-out time: good approximation Hubble-constant is the same in all directions 3D Hubble-flow Ratio of temperature and chemical potential constant Explanation, why thermal models work at RHIC

Csanád Máté 37 RHIC and the Universe Developed Hubble-flow at RHIC and in the Universe Universality of the Hubble expansion: u = H r Hubble constant of the Universe: H 0 = (71 ± 7) km/sec/Mpc converted to SI units: H 0 = (2.3 ± 0.2)x sec -1 Hubble constant at Au+Au collisions with 200 GeV H RHIC,1 = /R G  (3.8 ± 0.5)x10 22 sec -1 H RHIC,2 = 1/ 0  (5.1 ± 0.1)x10 22 sec -1 Ratio of expansion rates: H RHIC / H 0  2 x approx. the ratio of the ages of the objects without correction for inflation...

Csanád Máté 38 A useful analogy Core Sun Halo Solar wind T 0,RHIC  210 MeV T 0,SUN  16 million K T surface,RHIC  100 MeV T surface,SUN  6000 K Fireball at RHIC  our Sun

Csanád Máté 39 Succesful Buda-Lund hydro fits RHIC Au+Au and also SPS h+p and Pb+Pb Indication for deconfinement T>T c = 164 MeV by 5 at RHIC, but not at SPS 3D Hubble-flow Complete the fitting package for the relativistic calculations Fitting the new data Anisotropic flow, higher order flows at STAR Centrality and rapidity dependent elliptic flow Make prediction J/ yield HBT for kaons Find the relat. hydro solution that leads to our source function Summary, plans

Csanád Máté 40 Presentations Elliptic flow and correlations from the Buda-Lund model 2nd Warsaw Meeting on Particle Correlations and Resonances in Heavy Ion Collisions October , Warsaw, Poland Buda-Lund hydro modell and the rapidity dependence of the elliptic flow at RHIC 3rd Budapest Winter School on Heavy Ion Physics December , Budapest, Hungary Indication for quark deconfinement and evidence for a Hubble flow in Au+Au collisions at RHIC 17th International Conference on Quark Matter January , Oakland, California, USA Indication for quark deconfinement and evidence for a Hubble flow in Au+Au collisions at RHIC PHENIX Global-Hadron Physics Working Group Meeting January , Upton, New York, USA Three pion correlation function analysis PHENIX Global-Hadron Physics Working Group Meeting April , Upton, New York, USA Buda-Lund hydro model Brookhaven National Laboratory Nuclear Physics Seminar April , Upton, New York, USA Buda-Lund hydro in p+p collision at 200 GeV PHENIX Global-Hadron Physics Working Group Meeting May , Upton, New York, USA and Budapest, Hungary

Csanád Máté 41 Publications Indication of quark deconfinement and evidence for a Hubble flow in 130 and 200 GeV Au+Au collisions M. Csanád, T. Csörgő B. Lörstad, A. Ster Accepted by Journal of Physics G A hint at quark deconfinement in 200 GeV Au+Au data at RHIC M. Csanád, T. Csörgő, B. Lörstad, A. Ster Accepted by Nukleonika Buda-Lund hydro model and the elliptic flow at RHIC M. Csanád, T. Csörgő, B. Lörstad Accepted by Nukleonika An indication for deconfinement in Au+Au collisions at RHIC M. Csanád, T. Csörgő, B. Lörstad, A. Ster Acta Phys. Polon. B35: , Buda-Lund hydro model for ellipsoidally symmetric fireballs and the elliptic flow at RHIC M. Csanád, T. Csörgő, B. Lörstad Accepted by Nucl. Phys. A Absence of suppression in particle production at large transverse momentum in 200-GeV d+Au collisions PHENIX Collaboration (S.S. Adler,..., M. Csanád,... et al.) Phys.Rev.Lett.91:072303, Double helicity asymmetry in inclusive mid-rapidity  0 production for polarized p+p collisions at ps =200 GeV PHENIX Collaboration (S.S. Adler,..., M. Csanád,... et al.) Submitted to Phys.Rev.Lett. Analysis of identified particle yields and Bose-Einstein (HBT) correlations in p+p collisions at RHIC T. Csörgő, M. Csanád, B. Lörstad, A. Ster. To appear in Heavy Ion Physics

Csanád Máté 42 Thank you for your attention