Section 2.5. 2-6 Proving Statements about Angles.

Slides:



Advertisements
Similar presentations
Concepts, Theorems and Postulates that can be use to prove that triangles are congruent.
Advertisements

Proving Angles Congruent
Bell Work 1) Solve for each variable 2) Solve for each variable 3 and 4) Transitive Property of equality Definition of Congruence Given Definition of Congruence.
Warm Up Write a two column proof for the following information.
2.6 – Proving Statements about Angles Definition: Theorem A true statement that follows as a result of other true statements.
Use right angle congruence
2.6 Proving Statements about Angles Mrs. Spitz GeometryFall 2004.
2.6 Proving Statements about Angles
Warm Up Given: ∠ 1 ≅ ∠ 2 m ∠ 2 = 60° m ∠ 3 = 60° Prove: ∠ 1 ≅ ∠
2.6 Proving Statements about Angles Geometry. Standards/Objectives Students will learn and apply geometric concepts. Objectives: Use angle congruence.
Conjectures that lead to Theorems 2.5
Lesson 2.6 p. 109 Proving Statements about Angles Goal: to begin two-column proofs about congruent angles.
Chapter 2.7 Notes: Prove Angle Pair Relationships
Chapter 2.7 Notes: Prove Angle Pair Relationships Goal: You will use properties of special pairs of angles.
Proving Angle Relationships
2.6 Proving Statements about Angles. Properties of Angle Congruence ReflexiveFor any angle, A
Parallel Lines & Transversals 3.3. Transversal A line, ray, or segment that intersects 2 or more COPLANAR lines, rays, or segments. Non-Parallel lines.
3-2 Angles and Parallel Lines page 180
Proving angles congruent. To prove a theorem, a “Given” list shows you what you know from the hypothesis of the theorem. You will prove the conclusion.
Warm-Up Exercises Lesson 2.7, For use with pages Give a reason for each statement. 1. If m 1 = 90º and m 2 = 90º, then m 1 = m If AB BC,
P. 114: 23 – 28. Given Transitive prop. congruence Definition of congruence Given Transitive prop. Equality/Substitution.
Verifying Angle Relations. Write the reason for each statement. 1) If AB is congruent to CD, then AB = CD Definition of congruent segments 2) If GH =
Some properties from algebra applied to geometry PropertySegmentsAngles Reflexive Symmetric Transitive PQ=QP m
CONGRUENCE OF ANGLES THEOREM
Warm Up Complete each sentence.
2.6 What you should learn Why you should learn it
Chapter 2: Reasoning and Proof Prove Angle Pair Relationships.
3-3 Parallel Lines and Transversals. Section 3.2.
Ch. 2.6: Proving Statements about Angles
Thursday, August 30, 2012 Homework: p Complete #15-26 mentally; complete #27-31 odd, 34 & 35 in writing.
EXAMPLE 3 Prove the Vertical Angles Congruence Theorem
Use right angle congruence
Warm Up: Identify the property that justifies each statement.
Geometry 2.7 Big Idea: Prove Angle Pair Big Idea: Prove Angle PairRelationships.
Objective:Prove Angle Pair Relationships Prove Theorems- use properties, postulates, definitions and other proven theorems Prove: Right Angles Congruence.
2.8 Proving Angle Relationships What you’ll learn: 1.To write proofs involving supplementary and complementary angles. 2.To write proofs involving congruent.
2.6 Proving Statements about Angles Mrs. Spitz GeometryFall 2004.
2-4 Special Pairs of Angles. A) Terms 1) Complementary angles – a) Two angles whose sum is 90° b) The angles do not have to be adjacent. c) Each angle.
Holt McDougal Geometry 2-6 Geometric Proof Write two-column proofs. Prove geometric theorems by using deductive reasoning. Objectives.
Slide Formalizing Geometric Proofs Copyright © 2014 Pearson Education, Inc.
USING PROPERTIES FROM ALGEBRA ALGEBRAIC PROPERTIES OF EQUALITY Let a, b, and c be real numbers. SUBTRACTION PROPERTY ADDITION PROPERTY If a = b, then a.
Sect. 2.6 Proving Statements about angles. Goal 1 Congruence of Angles Goal 2 Properties of Special Pairs of Angles.
2-6 Proving Statements about Angles Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Congruent Angles.
2. 6 Prove Statement about Segments and Angles 2
2.6 Proving Geometric Relationships
Section 2.8: Proving Angle Relationships
Chapter 2.6 (Part 1): Prove Statements about Segments and Angles
Use right angle congruence
Give a reason for each statement.
Prove Angle Pair Relationships
Use right angle congruence
2.8 Notes: Proving Angle Relationships
CONGRUENCE OF ANGLES THEOREM
Statements About Segments and Angles
CONGRUENCE OF ANGLES THEOREM
2.6 Proving Statements about Angles
2.6 Proving Statements about Angles
Proving things about Angles
Proving Statements About Angles
Properties of Equality and Proving Segment & Angle Relationships
2.6 Proving Statements about Angles
2-6 Proving Angles Congruent
This is a postulate, not a theorem
Proving things about Angles
Give a reason for each statement.
Goal: The learner will use properties of special pairs of angles.
Proving Statements about Angles
Unit 2: Congruence, Similarity, & Proofs
2.7 Prove Theorems about Lines and Angles
Presentation transcript:

Section 2.5

2-6 Proving Statements about Angles

C ONGRUENCE OF A NGLES THEOREM THEOREM 2.2 Properties of Angle Congruence Angle congruence is r ef lex ive, sy mme tric, and transitive. Here are some examples. TRANSITIVE IfA  BandB  C, then A  C SYMMETRIC If A  B, then B  A REFLEX IVE For any angle A, A  A

Transitive Property of Angle Congruence Prove the Transitive Property of Congruence for angles. S OLUTION To prove the Transitive Property of Congruence for angles, begin by drawing three congruent angles. Label the vertices as A, B, and C. GIVEN A B, PROVE A CA C A B C B CB C

Transitive Property of Angle Congruence GIVEN A B, B CB C PROVE A CA C StatementsReasons mA = mB Definition of congruent angles 5 A  C Definition of congruent angles A  B,Given B  C mB = mC Definition of congruent angles mA = mC Transitive property of equality

Using the Transitive Property This two-column proof uses the Transitive Property. StatementsReasons m1 = m3 Definition of congruent angles GIVEN m3 = 40°,12,23 PROVE m1 = 40° 1 m1 = 40° Substitution property of equality 13 Transitive property of Congruence Givenm3 = 40°,12, 2323

Proving Theorem 2.3 THEOREM THEOREM 2.3 Right Angle Congruence Theorem All right angles are congruent. You can prove Theorem 2.3 as shown. GIVEN 1 and2 are right angles PROVE 1212

Proving Theorem 2.3 StatementsReasons m1 = 90°, m2 = 90° Definition of right angles m1 = m2 Transitive property of equality 1  2 Definition of congruent angles GIVEN 1 and2 are right angles PROVE and2 are right angles Given

P ROPERTIES OF S PECIAL P AIRS OF A NGLES THEOREMS THEOREM 2.4 Congruent Supplements Theorem If two angles are supplementary to the same angle (or to congruent angles) then they are congruent

P ROPERTIES OF S PECIAL P AIRS OF A NGLES THEOREMS THEOREM 2.4 Congruent Supplements Theorem If two angles are supplementary to the same angle (or to congruent angles) then they are congruent If m1 + m2 = 180° m2 + m3 = 180° and 1 then 1  3

P ROPERTIES OF S PECIAL P AIRS OF A NGLES THEOREMS THEOREM 2.5 Congruent Complements Theorem If two angles are complementary to the same angle (or to congruent angles) then the two angles are congruent

P ROPERTIES OF S PECIAL P AIRS OF A NGLES THEOREMS THEOREM 2.5 Congruent Complements Theorem If two angles are complementary to the same angle (or to congruent angles) then the two angles are congruent. 4 If m4 + m5 = 90° m5 + m6 = 90° and then 4 

Proving Theorem 2.4 StatementsReasons 1 2 GIVEN 1 and2 are supplements PROVE and4 are supplements and2 are supplementsGiven 3 and4 are supplements 1  4 m1 + m2 = 180° Definition of supplementary angles m3 + m4 = 180°

Proving Theorem 2.4 StatementsReasons 3 GIVEN 1 and2 are supplements PROVE and4 are supplements m1 + m2 = Substitution property of equality m3 + m1 m1 + m2 = Transitive property of equality m3 + m4 m1 = m4 Definition of congruent angles

Proving Theorem 2.4 StatementsReasons GIVEN 1 and2 are supplements PROVE and4 are supplements m2 = m3 Subtraction property of equality 23 Definition of congruent angles

POSTULATE POSTULATE 12 Linear Pair Postulate If two angles for m a linear pair, then they are supplementary. m1 + m2 = 180° P ROPERTIES OF S PECIAL P AIRS OF A NGLES

Proving Theorem 2.6 THEOREM THEOREM 2.6 Vertical Angles Theorem Vertical angles are congruent 1 3,24

Proving Theorem 2.6 PROVE 5757 GIVEN 5 and6 are a linear pair, 6 and7 are a linear pair StatementsReasons 5 and6 are a linear pair, Given 6 and7 are a linear pair 5 and6 are supplementary, Linear Pair Postulate 6 and7 are supplementary 5 7 Congruent Supplements Theorem

2 column proof form Given