Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration.

Slides:



Advertisements
Similar presentations
Data Warehousing and Data Mining J. G. Zheng May 20 th 2008 MIS Chapter 3.
Advertisements

Chapter 4 Tutorial.
James Serra – Data Warehouse/BI/MDM Architect
Technical BI Project Lifecycle
Data Warehousing CPS216 Notes 13 Shivnath Babu. 2 Warehousing l Growing industry: $8 billion way back in 1998 l Range from desktop to huge: u Walmart:
Data Warehousing M R BRAHMAM.
Chapter 1 The Database Environment
Decision Support and Data Warehouse. Decision supports Systems Components Data management function –Data warehouse Model management function –Analytical.
Spatial data warehouses and SOLAP: a new GIS technology Geosciences, mapping day Jean-Paul KASPRZYK, phd student.
Business Intelligence. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views.
COMP 578 Data Warehousing And OLAP Technology Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University.
1 Lecture 10: More OLAP - Dimensional modeling
Lab3 CPIT 440 Data Mining and Warehouse.
Data Warehousing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their.
CSE6011 Warehouse Models & Operators  Data Models  relations  stars & snowflakes  cubes  Operators  slice & dice  roll-up, drill down  pivoting.
Microsoft SQL Server 2012 Analysis Services (SSAS) Reporting Services (SSRS)
Ch3 Data Warehouse part2 Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
DATA WAREHOUSE (Muscat, Oman).
Chapter 4 Tutorial.
Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2010.
OLAP OPERATIONS. OLAP ONLINE ANALYTICAL PROCESSING OLAP provides a user-friendly environment for Interactive data analysis. In the multidimensional model,
Dr. Bernard Chen Ph.D. University of Central Arkansas
Chetan Bhirud Raza Mohammad Abinash Sahoo Online Marketing Giant.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
Business Intelligence. Topics Chart Online Analytical Process, OLAP – Excel’s Pivot table – Data visualization with dashboard Data warehousing Data Mining.
©Silberschatz, Korth and Sudarshan18.1Database System Concepts - 5 th Edition, Aug 26, 2005 Buzzword List OLTP – OnLine Transaction Processing (normalized,
1 Data Warehouses BUAD/American University Data Warehouses.
Data Warehousing.
October 28, Data Warehouse Architecture Data Sources Operational DBs other sources Analysis Query Reports Data mining Front-End Tools OLAP Engine.
13 1 Chapter 13 The Data Warehouse Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel.
Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Part I Data Mining Fundamentals Chapter 1 Data Mining: A First View Jason C. H. Chen, Ph.D. Professor.
Ch3 Data Warehouse Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009.
SHIFALI CHOUBEY GISE LAB IITB Decision Support System For Farmers.
Fox MIS Spring 2011 Data Warehouse Week 8 Introduction of Data Warehouse Multidimensional Analysis: OLAP.
UNIT-II Principles of dimensional modeling
Chapter 5 DATA WAREHOUSING Study Sections 5.2, 5.3, 5.5, Pages: & Snowflake schema.
Decision supports Systems Components
CMPE 226 Database Systems October 21 Class Meeting Department of Computer Engineering San Jose State University Fall 2015 Instructor: Ron Mak
Business Intelligence. Topics Chart Online Analytical Process, OLAP – Excel’s Pivot table – Data visualization with dashboard Scenario Management Data.
Data Mining Data Warehouses.
OLAP On Line Analytic Processing. OLTP On Line Transaction Processing –support for ‘real-time’ processing of orders, bookings, sales –typically access.
Chapter 3 Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration Gonzaga University Spokane, WA 99223
Data Warehousing.
Advanced Database Concepts
The Data Warehouse Chapter Operational Databases = transactional database  designed to process individual transaction quickly and efficiently.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support.
Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 3 Basic Data Mining Techniques Jason C. H. Chen, Ph.D. Professor of MIS School of Business.
1 Database Systems, 8 th Edition Star Schema Data modeling technique –Maps multidimensional decision support data into relational database Creates.
1 Management Information Systems M Agung Ali Fikri, SE. MM.
Data Warehousing and OLAP Outline u Models & operations u Implementing a warehouse u Future directions.
CMPE 226 Database Systems April 12 Class Meeting Department of Computer Engineering San Jose State University Spring 2016 Instructor: Ron Mak
Data Analysis Decision Support Systems Data Analysis and OLAP Data Warehousing.
Presented By: Pedel Oppong-Abebrese,Pedel Oppong-Abebrese Michael Boadi, William Osei, Nana Amoa OforiMichael BoadiWilliam OseiNana Amoa Ofori DATA WAREHOUSING.
11/20/ :11 AMData Mining 1 Data Mining – CSE 9033 Chapter – 1; Data Warehousing Dr. Goutam Sarker, B.E., M.E., Ph.D.(Engineering), Fellow: IE(I),
Data Warehousing CIS 4301 Lecture Notes 4/20/2006.
Chapter 13 Business Intelligence and Data Warehouses
Data Warehouses Brief Overview Add ETL Copyright © 2011 Curt Hill.
Data storage is growing Future Prediction through historical data
Data Warehouse.
Databases & Data Warehouses
المحاضرة 4 : مستودعات البيانات (Data warehouse)
CMPE 226 Database Systems April 11 Class Meeting
Data Warehouse and OLAP
MIS2502: Data Analytics Dimensional Data Modeling
Dr. Bernard Chen Ph.D. University of Central Arkansas Fall 2009
MIS2502: Data Analytics Dimensional Data Modeling
Introduction of Week 9 Return assignment 5-2
PowerBI Desktop ETL with Oracle Database Connection
Data Warehouse and OLAP
Presentation transcript:

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Chapter 6 The Data Warehouse Jason C. H. Chen, Ph.D. Professor of MIS School of Business Administration Gonzaga University Spokane, WA

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining 6.1 Operational Databases

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Data Modeling and Normalization One-to-One Relationships One-to-Many Relationships Many-to-Many Relationships

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Data Modeling and Normalization First Normal Form Second Normal Form Third Normal Form

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.1 A simple entity- relationship diagram

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining The Relational Model

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

6.2 Data Warehouse Design

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.2 A data warehouse process model

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Entering Data into the Warehouse Independent Data Mart ETL (Extract, Transform, Load Routine) Metadata

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Structuring the Data Warehouse: The Star Schema Fact Table Dimension Tables Slowly Changing Dimensions

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.3 A star schema for credit cared purchases

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining The Multidimensionality of the Star Schema

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.4 Dimensions of the fact table shown in Figure 6.3

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Additional Relational Schemas Snowflake Schema Constellation Schema

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.5 A constellation schema for credit card purchases and promotions

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Decision Support: Analyzing the Warehouse Data Reporting Data Analyzing Data Knowledge Discovery

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining 6.3 On-line Analytical Processing

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining OLAP Operations Slice – A single dimension operation Dice – A multidimensional operation Roll-up – Aggregation, a higher level of generalization Drill-down – A greater level of detail the reverse of a roll-up Rotation – View data from a new perspective

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.6 A multidemensional cube for credit card purchases

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Concept Hierarchy A mapping that allows attributes to be viewed from varying levels of detail.

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.7 A concept hierarchy for location

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.8 Rolling up from months to quarters

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining 6.4 Excel Pivot Tables for Data Analysis

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Creating a Simple Pivot Table

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.9 A pivot table template

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 1,2 (p.198)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 2, 3

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 5

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 6

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 7

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Result of Step 7 (p.198)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.10 A summary report for income range

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

Figure 6.10 A summary report for income range

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.9 A pivot table template

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 1, 2(bottom of p.198)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 (top) and steps 1,2 3 (p.199)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4 (p.199)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4 (p.199)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

Steps 1,2

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 2

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

Step 3 (p.200)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - continued (p.200)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - continued (p.200)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - continued (p.200)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 - result (p.200)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.11 A pie chart for income range

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Pivot Tables for Hypothesis Testing Younger cardholders purchase credit card insurance whereas more senior cardholders do not.

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.12 A pivot table showing age and credit card insurance choice

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Method 1

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.13 Grouping the credit card promotionn data by age

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.14 PivotTable Layout Wizard Method 2- Steps 1,2,3

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Method 2- Step 4

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 4,5

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 6

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 7

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 8

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Result of Method 2 The average age for credit card insurance = no is approximately 41.42, whereas the average age for credit card insurance = yes is approximately 32.33

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Creating a Multidimensional Pivot Table Investigate relationships between the magazine, watch, and life insurance promotions relative to customer gender and income range.

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.15 A credit card promotion cube

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 1,2,3 (p. 206)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Steps 3 (after dragging life insurance promotion to DropData Items Here. ) Continue dragging watch promotion and magazine promotion to DropData Items Here.

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 3 (result)

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Step 4

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Decision Making – steps 1-3, p.207 A total of two customers took advantage of the life insurance and magazine promotions but did not purchase the watch promotion.

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining Figure 6.16 A pivot table with page variables for credit card promotions

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining

Result of p.207

Dr. Chen, Data Mining  A/W & Dr. Chen, Data Mining