Chap 5-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 5 Discrete and Continuous.

Slides:



Advertisements
Similar presentations
Chapter 6 Continuous Random Variables and Probability Distributions
Advertisements

Chapter 5 Some Important Discrete Probability Distributions
Chapter 5 Discrete Random Variables and Probability Distributions
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 4 Using Probability and Probability Distributions.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics for.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 5-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Chapter 4 Discrete Random Variables and Probability Distributions
Chapter 6 Introduction to Continuous Probability Distributions
Chapter 6 Introduction to Continuous Probability Distributions
Chapter 6 Introduction to Continuous Probability Distributions
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 4-1 Introduction to Statistics Chapter 5 Random Variables.
Fundamentals of Business Statistics – Murali Shanker Chap 4-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 4 Using Probability.
Chapter 6 Continuous Random Variables and Probability Distributions
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Chapter 5 Discrete and Continuous Probability Distributions
Chapter 6 The Normal Distribution and Other Continuous Distributions
Ch. 6 The Normal Distribution
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 6-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Chapter 6 The Normal Distribution & Other Continuous Distributions
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 6-1 Chapter 6 The Normal Distribution & Other Continuous Distributions Statistics for.
Chapter 5 Continuous Random Variables and Probability Distributions
Chapter 5 Discrete Probability Distributions
Chap 6-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 6 Continuous Random Variables and Probability Distributions Statistics.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions.
Chap 5-1 Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall Chap 5-1 Chapter 5 Discrete Probability Distributions Basic Business Statistics.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions Basic Business.
Statistics for Managers Using Microsoft® Excel 5th Edition
Discrete and Continuous Probability Distributions.
Business Statistics: A First Course, 5e © 2009 Prentice-Hall, Inc. Chap 6-1 Chapter 6 The Normal Distribution Business Statistics: A First Course 5 th.
Chapter 6 The Normal Distribution & Other Continuous Distributions
Chapter 4 Continuous Random Variables and Probability Distributions
Chap 5-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 5 Discrete Probability Distributions Business Statistics: A First.
Chap 6-1 Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall Chapter 6 The Normal Distribution Business Statistics: A First Course 6 th.
6-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 6 Introduction to Continuous Probability Distributions.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Theory of Probability Statistics for Business and Economics.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions.
Lecture 4 The Normal Distribution. Lecture Goals After completing this chapter, you should be able to:  Find probabilities using a normal distribution.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 5-1 Introduction to Statistics Chapter 6 Continuous Probability Distributions.
Using Probability and Discrete Probability Distributions
Applied Quantitative Analysis and Practices LECTURE#11 By Dr. Osman Sadiq Paracha.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Copyright ©2011 Pearson Education, Inc. publishing as Prentice Hall 5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete.
Basic Business Statistics
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 6-1 The Normal Distribution.
Business Statistics: A Decision-Making Approach, 7e © 2008 Prentice-Hall, Inc. Chap 5-1 Business Statistics: A Decision-Making Approach 7 th Edition Chapter.
Statistics for Managers Using Microsoft Excel, 5e © 2008 Pearson Prentice-Hall, Inc.Chap 6-1 Statistics for Managers Using Microsoft® Excel 5th Edition.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions Basic Business.
Chap 6-1 Chapter 6 The Normal Distribution Statistics for Managers.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Chap 5-1 Discrete and Continuous Probability Distributions.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 6-1 Chapter 6 The Normal Distribution Business Statistics, A First Course 4 th.
Yandell – Econ 216 Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions.
Chapter 6 The Normal Distribution and Other Continuous Distributions
Chapter 5 Discrete Probability Distributions
Normal Distribution and Parameter Estimation
Chapter 6 Introduction to Continuous Probability Distributions
Chapter 5 Some Important Discrete Probability Distributions
Chapter 6 Introduction to Continuous Probability Distributions
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 6 Continuous Probability Distributions
Chapter 5 Continuous Random Variables and Probability Distributions
The Normal Distribution
Presentation transcript:

Chap 5-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 5 Discrete and Continuous Probability Distributions

Chap 5-2 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Chapter Goals After completing this chapter, you should be able to: Apply the binomial distribution to applied problems Compute probabilities for the Poisson and hypergeometric distributions Find probabilities using a normal distribution table and apply the normal distribution to business problems Recognize when to apply the uniform and exponential distributions

Chap 5-3 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Probability Distributions Continuous Probability Distributions Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions Normal Uniform Exponential

Chap 5-4 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A discrete random variable is a variable that can assume only a countable number of values Many possible outcomes: number of complaints per day number of TV’s in a household number of rings before the phone is answered Only two possible outcomes: gender: male or female defective: yes or no spreads peanut butter first vs. spreads jelly first Discrete Probability Distributions

Chap 5-5 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Continuous Probability Distributions A continuous random variable is a variable that can assume any value on a continuum (can assume an uncountable number of values) thickness of an item time required to complete a task temperature of a solution height, in inches These can potentially take on any value, depending only on the ability to measure accurately.

Chap 5-6 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Binomial Distribution Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions

Chap 5-7 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Binomial Distribution Characteristics of the Binomial Distribution: A trial has only two possible outcomes – “success” or “failure” There is a fixed number, n, of identical trials The trials of the experiment are independent of each other The probability of a success, p, remains constant from trial to trial If p represents the probability of a success, then (1-p) = q is the probability of a failure

Chap 5-8 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Binomial Distribution Settings A manufacturing plant labels items as either defective or acceptable A firm bidding for a contract will either get the contract or not A marketing research firm receives survey responses of “yes I will buy” or “no I will not” New job applicants either accept the offer or reject it

Chap 5-9 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Counting Rule for Combinations A combination is an outcome of an experiment where x objects are selected from a group of n objects where: n! =n(n - 1)(n - 2)... (2)(1) x! = x(x - 1)(x - 2)... (2)(1) 0! = 1 (by definition)

Chap 5-10 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. P(x) = probability of x successes in n trials, with probability of success p on each trial x = number of ‘successes’ in sample, (x = 0, 1, 2,..., n) p = probability of “success” per trial q = probability of “failure” = (1 – p) n = number of trials (sample size) P(x) n x ! nx pq x n x ! ()!    Example: Flip a coin four times, let x = # heads: n = 4 p = 0.5 q = (1 -.5) =.5 x = 0, 1, 2, 3, 4 Binomial Distribution Formula

Chap 5-11 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. n = 5 p = 0.1 n = 5 p = 0.5 Mean X P(X) X P(X) 0 Binomial Distribution The shape of the binomial distribution depends on the values of p and n Here, n = 5 and p =.1 Here, n = 5 and p =.5

Chap 5-12 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Binomial Distribution Characteristics Mean Variance and Standard Deviation Wheren = sample size p = probability of success q = (1 – p) = probability of failure

Chap 5-13 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. n = 5 p = 0.1 n = 5 p = 0.5 Mean X P(X) X P(X) 0 Binomial Characteristics Examples

Chap 5-14 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Using Binomial Tables n = 10 xp=.15p=.20p=.25p=.30p=.35p=.40p=.45p= p=.85p=.80p=.75p=.70p=.65p=.60p=.55p=.50x Examples: n = 10, p =.35, x = 3: P(x = 3|n =10, p =.35) =.2522 n = 10, p =.75, x = 2: P(x = 2|n =10, p =.75) =.0004

Chap 5-15 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Using PHStat Select PHStat / Probability & Prob. Distributions / Binomial…

Chap 5-16 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Using PHStat Enter desired values in dialog box Here:n = 10 p =.35 Output for x = 0 to x = 10 will be generated by PHStat Optional check boxes for additional output

Chap 5-17 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. P(x = 3 | n = 10, p =.35) =.2522 PHStat Output P(x > 5 | n = 10, p =.35) =.0949

Chap 5-18 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Poisson Distribution Binomial Hypergeometric Poisson Probability Distributions Discrete Probability Distributions

Chap 5-19 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Poisson Distribution Characteristics of the Poisson Distribution: The outcomes of interest are rare relative to the possible outcomes The average number of outcomes of interest per time or space interval is The number of outcomes of interest are random, and the occurrence of one outcome does not influence the chances of another outcome of interest The probability of that an outcome of interest occurs in a given segment is the same for all segments

Chap 5-20 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Poisson Distribution Formula where: t = size of the segment of interest x = number of successes in segment of interest = expected number of successes in a segment of unit size e = base of the natural logarithm system ( )

Chap 5-21 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Poisson Distribution Characteristics Mean Variance and Standard Deviation where = number of successes in a segment of unit size t = the size of the segment of interest

Chap 5-22 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Using Poisson Tables X t Example: Find P(x = 2) if =.05 and t = 100

Chap 5-23 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Graph of Poisson Probabilities X t = P(x = 2) =.0758 Graphically: =.05 and t = 100

Chap 5-24 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Poisson Distribution Shape The shape of the Poisson Distribution depends on the parameters and t: t = 0.50 t = 3.0

Chap 5-25 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Hypergeometric Distribution Binomial Poisson Probability Distributions Discrete Probability Distributions Hypergeometric

Chap 5-26 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Hypergeometric Distribution “n” trials in a sample taken from a finite population of size N Sample taken without replacement Trials are dependent Concerned with finding the probability of “x” successes in the sample where there are “X” successes in the population

Chap 5-27 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Hypergeometric Distribution Formula. Where N = Population size X = number of successes in the population n = sample size x = number of successes in the sample n – x = number of failures in the sample (Two possible outcomes per trial)

Chap 5-28 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Hypergeometric Distribution Formula ■Example: 3 Light bulbs were selected from 10. Of the 10 there were 4 defective. What is the probability that 2 of the 3 selected are defective? N = 10n = 3 X = 4 x = 2

Chap 5-29 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Hypergeometric Distribution in PHStat Select: PHStat / Probability & Prob. Distributions / Hypergeometric …

Chap 5-30 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Hypergeometric Distribution in PHStat Complete dialog box entries and get output … N = 10 n = 3 X = 4 x = 2 P(x = 2) = 0.3 (continued)

Chap 5-31 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Normal Distribution Continuous Probability Distributions Normal Uniform Exponential

Chap 5-32 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Normal Distribution ‘ Bell Shaped’ Symmetrical Mean, Median and Mode are Equal Location is determined by the mean, μ Spread is determined by the standard deviation, σ The random variable has an infinite theoretical range: +  to   Mean = Median = Mode x f(x) μ σ

Chap 5-33 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. By varying the parameters μ and σ, we obtain different normal distributions Many Normal Distributions

Chap 5-34 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Normal Distribution Shape x f(x) μ σ Changing μ shifts the distribution left or right. Changing σ increases or decreases the spread.

Chap 5-35 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Finding Normal Probabilities Probability is the area under the curve! ab x f(x) Paxb( )  Probability is measured by the area under the curve

Chap 5-36 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. f(x) x μ Probability as Area Under the Curve 0.5 The total area under the curve is 1.0, and the curve is symmetric, so half is above the mean, half is below

Chap 5-37 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Empirical Rules μ ± 1 σ  encloses about 68% of x’s  f(x) x μ μ  σμ  σ What can we say about the distribution of values around the mean? There are some general rules: σσ 68.26%

Chap 5-38 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Empirical Rule μ ± 2σ covers about 95% of x’s μ ± 3σ covers about 99.7% of x’s xμ 2σ2σ2σ2σ xμ 3σ3σ3σ3σ 95.44%99.72% (continued)

Chap 5-39 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Importance of the Rule If a value is about 2 or more standard deviations away from the mean in a normal distribution, then it is far from the mean The chance that a value that far or farther away from the mean is highly unlikely, given that particular mean and standard deviation

Chap 5-40 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Standard Normal Distribution Also known as the “z” distribution Mean is defined to be 0 Standard Deviation is 1 z f(z) 0 1 Values above the mean have positive z-values, values below the mean have negative z-values

Chap 5-41 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Standard Normal Any normal distribution (with any mean and standard deviation combination) can be transformed into the standard normal distribution (z) Need to transform x units into z units

Chap 5-42 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Translation to the Standard Normal Distribution Translate from x to the standard normal (the “z” distribution) by subtracting the mean of x and dividing by its standard deviation:

Chap 5-43 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Example If x is distributed normally with mean of 100 and standard deviation of 50, the z value for x = 250 is This says that x = 250 is three standard deviations (3 increments of 50 units) above the mean of 100.

Chap 5-44 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Comparing x and z units z x Note that the distribution is the same, only the scale has changed. We can express the problem in original units (x) or in standardized units (z) μ = 100 σ = 50

Chap 5-45 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Standard Normal Table The Standard Normal table in the textbook (Appendix D) gives the probability from the mean (zero) up to a desired value for z z Example: P(0 < z < 2.00) =.4772

Chap 5-46 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Standard Normal Table The value within the table gives the probability from z = 0 up to the desired z value P(0 < z < 2.00) =.4772 The row shows the value of z to the first decimal point The column gives the value of z to the second decimal point (continued)

Chap 5-47 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. General Procedure for Finding Probabilities Draw the normal curve for the problem in terms of x Translate x-values to z-values Use the Standard Normal Table To find P(a < x < b) when x is distributed normally:

Chap 5-48 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Z Table example Suppose x is normal with mean 8.0 and standard deviation 5.0. Find P(8 < x < 8.6) P(8 < x < 8.6) = P(0 < z < 0.12) Z x8.6 8 Calculate z-values:

Chap 5-49 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Z Table example Suppose x is normal with mean 8.0 and standard deviation 5.0. Find P(8 < x < 8.6) P(0 < z < 0.12) z x P(8 < x < 8.6)  = 8  = 5  = 0  = 1 (continued)

Chap 5-50 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Z 0.12 z Solution: Finding P(0 < z < 0.12) Standard Normal Probability Table (Portion) 0.00 = P(0 < z < 0.12) P(8 < x < 8.6)

Chap 5-51 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Finding Normal Probabilities Suppose x is normal with mean 8.0 and standard deviation 5.0. Now Find P(x < 8.6) Z

Chap 5-52 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Finding Normal Probabilities Suppose x is normal with mean 8.0 and standard deviation 5.0. Now Find P(x < 8.6) (continued) Z P(x < 8.6) = P(z < 0.12) = P(z < 0) + P(0 < z < 0.12) = =.5478

Chap 5-53 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Upper Tail Probabilities Suppose x is normal with mean 8.0 and standard deviation 5.0. Now Find P(x > 8.6) Z

Chap 5-54 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Now Find P(x > 8.6)… (continued) Z Z =.4522 P(x > 8.6) = P(z > 0.12) = P(z > 0) - P(0 < z < 0.12) = =.4522 Upper Tail Probabilities

Chap 5-55 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Lower Tail Probabilities Suppose x is normal with mean 8.0 and standard deviation 5.0. Now Find P(7.4 < x < 8) Z

Chap 5-56 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Lower Tail Probabilities Now Find P(7.4 < x < 8)… Z The Normal distribution is symmetric, so we use the same table even if z-values are negative: P(7.4 < x < 8) = P(-0.12 < z < 0) =.0478 (continued).0478

Chap 5-57 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Normal Probabilities in PHStat We can use Excel and PHStat to quickly generate probabilities for any normal distribution We will find P(8 < x < 8.6) when x is normally distributed with mean 8 and standard deviation 5

Chap 5-58 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. PHStat Dialogue Box Select desired options and enter values

Chap 5-59 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. PHStat Output

Chap 5-60 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Uniform Distribution Continuous Probability Distributions Normal Uniform Exponential

Chap 5-61 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Uniform Distribution The uniform distribution is a probability distribution that has equal probabilities for all possible outcomes of the random variable

Chap 5-62 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Continuous Uniform Distribution: where f(x) = value of the density function at any x value a = lower limit of the interval b = upper limit of the interval The Uniform Distribution (continued) f(x) =

Chap 5-63 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Uniform Distribution Example: Uniform Probability Distribution Over the range 2 ≤ x ≤ 6: f(x) = =.25 for 2 ≤ x ≤ x f(x)

Chap 5-64 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Exponential Distribution Continuous Probability Distributions Normal Uniform Exponential

Chap 5-65 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Exponential Distribution Used to measure the time that elapses between two occurrences of an event (the time between arrivals) Examples: Time between trucks arriving at an unloading dock Time between transactions at an ATM Machine Time between phone calls to the main operator

Chap 5-66 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. The Exponential Distribution The probability that an arrival time is equal to or less than some specified time a is where 1/ is the mean time between events Note that if the number of occurrences per time period is Poisson with mean, then the time between occurrences is exponential with mean time 1/

Chap 5-67 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Exponential Distribution Shape of the exponential distribution (continued) f(x) x = 1.0 (mean = 1.0) = 0.5 (mean = 2.0) = 3.0 (mean =.333)

Chap 5-68 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Example Example: Customers arrive at the claims counter at the rate of 15 per hour (Poisson distributed). What is the probability that the arrival time between consecutive customers is less than five minutes?  Time between arrivals is exponentially distributed with mean time between arrivals of 4 minutes (15 per 60 minutes, on average)  1/ = 4.0, so =.25  P(x < 5) = 1 - e - a = 1 – e -(.25)(5) =.7135

Chap 5-69 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. Chapter Summary Reviewed key discrete distributions binomial, poisson, hypergeometric Reviewed key continuous distributions normal, uniform, exponential Found probabilities using formulas and tables Recognized when to apply different distributions Applied distributions to decision problems