Related Rates.

Slides:



Advertisements
Similar presentations
4.6 Related Rates.
Advertisements

RELATED RATES PROBLEMS
Related Rate! P.GAO 高昊天 CHAD.BRINLEY 查德. Finding Related Rate The important Rule use of the CHAIN RULE. To find the rates of change of two or more related.
Section 2.6 Related Rates.
3.11 Related Rates Mon Dec 1 Do Now Differentiate implicitly in terms of t 1) 2)
Section 2.6: Related Rates
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
Teresita S. Arlante Naga City Science High School.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
D1 - Related Rates IB Math HL, MCB4U - Santowski.
3.11 Related Rates Mon Nov 10 Do Now
2.6 Related Rates. Related Rate Problems General Steps for solving a Related Rate problem Set up: Draw picture/ Label now – what values do we know.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
RELATED RATES Mrs. Erickson Related Rates You will be given an equation relating 2 or more variables. These variables will change with respect to time,
2.8 Related Rates.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
4.6 Related rates.
Sec 3.4 Related Rates Problems – An Application of the Chain Rule.
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
Ch 4.6 Related Rates Graphical, Numerical, Algebraic by Finney Demana, Waits, Kennedy.
Related Rates Greg Kelly, Hanford High School, Richland, Washington.
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
RELATED RATES. P2P22.7 RELATED RATES  If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates.
Warm-Up If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
Related Rates. I. Procedure A.) State what is given and what is to be found! Draw a diagram; introduce variables with quantities that can change and constants.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
Chapter 5: Applications of the Derivative
3.11 Related Rates Tues Nov 10 Do Now Differentiate implicitly in terms of t 1) 2)
Copyright © Cengage Learning. All rights reserved. Differentiation.
Sec 4.1 Related Rates Strategies in solving problems: 1.Read the problem carefully. 2.Draw a diagram or pictures. 3.Introduce notation. Assign symbols.
RELATED RATES Example 1 Air is being pumped into a spherical balloon so that its volume increases at a rate of 100 cm3/s. How fast is the radius of the.
Point Value : 50 Time limit : 5 min #1 At a sand and gravel plant, sand is falling off a conveyor and into a conical pile at the rate of 10 ft 3 /min.
1. Motion in a straight line 2  3   Solving any problem first, see what are given data.  What quantity is to be found?  Find the relation between.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
Car A and B leave a town at the same time. Car A heads due north at a rate of 75km/hr and car B heads due east at a rate of 80 km/hr. How fast is the.
Warm Up Day two Write the following statements mathematically John’s height is changing at the rate of 3 in./year The volume of a cone is decreasing.
Implicit Differentiation & Related Rates Review. Given: y = xtany, determine dy/dx.
Related Rates 5.6.
Calculus - Santowski 3/6/2016Calculus - Santowski1.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Mr. Moore is pushing the bottom end of a meter stick horizontally away from the wall at 0.25m/sec. How fast is the upper end of the stick falling down.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Related Rates Extra Practice. The length l of a rectangle is decreasing at the rate of 2 cm/sec while the width w is increasing at the rate of 2 cm/sec.
Section 2.8 Related Rates. RELATED RATE PROBLEMS Related rate problems deal with quantities that are changing over time and that are related to each other.
3 DERIVATIVES.
Logarithmic Differentiation 对数求导. Example 16 Example 17.
Review Implicit Differentiation Take the following derivative.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
3.10 – Related Rates 4) An oil tanker strikes an iceberg and a hole is ripped open on its side. Oil is leaking out in a near circular shape. The radius.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
MATH 1910 Chapter 2 Section 6 Related Rates.
Hold on to your homework
Differentiate. g(x) = 4 sec x + tan x
Related Rates.
Differentiate. g(x) = 8 sec x + tan x
Chapter 3, Section 8 Related Rates Rita Korsunsky.
Implicit Differentiation
Section 2.6 Calculus AP/Dual, Revised ©2017
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Math 180 Packet #9 Related Rates.
§3.9 Related rates Main idea:
Presentation transcript:

Related Rates

Example 1: If the radius of a circle is increasing at the rate of 7cm/sec, how fast is its area increasing when the radius is 20 cm? r r r

Solution to Example 1: Let A be the area and r the radius of circle at time t. Know Find

By the chain rule,

Example 2: One end of a 13-foot ladder is on the ground and the other end rests on a vertical wall. If the bottom end slides away from the wall at the rate of 3 ft/sec, how fast is the top of the ladder sliding down the wall when the bottom of the ladder is 5 feet from the wall?

Differentiating implicitly w.r.t. x, we get

Example 3: An object is moving clockwise around the circle As it passes through the point the y-coordinate is decreasing at the rate of 3 units per second. At what rate is its x-coordinate changing at that point?

Solution to Example 3: Know Find

Example 4: A conical paper cup 8 cm across the top and 12 cm deep is full of water. Water begins to leak out of the bottom at the rate of How fast is the level of water dropping when the water is 3 cm deep?

Let V, r, and h denote the volume, radius, Solution to Example 4: Let V, r, and h denote the volume, radius, and hight, respectively, of the water remaining at time t Know Find

Example 5: The area of an equilateral triangle is increasing at a rate of Find the rate the length of each side is increasing when the area is

Solution to Example 5: Let A, x, and h denote the area, length of each side, and the height, respectively, of the triangle at time t min. Know Find