(7.7) Geometry and spatial reasoning The student uses coordinate geometry to describe location on a plane. The student is expected to: (B) graph reflections.

Slides:



Advertisements
Similar presentations
Do Now 1) Draw a coordinate grid (like below) and label the axes 2)Graph the point (2,1) 3) Translate (2,1) 4 units up and 1 unit left 4)Write the translation.
Advertisements

TRANSFORMATIONS.
Warm Up A figure has vertices A, B, and C. After a transformation, the image of the figure has vertices A′, B′, and C′. Draw the pre-image and the image.
(7.7) Geometry and spatial reasoning The student uses coordinate geometry to describe location on a plane. The student is expected to: (B) graph reflections.
The Coordinate Plane. A coordinate plane is formed when two number lines intersect. The coordinate plane is used to locate points. The two number lines.
EQ: How can you investigate transformations? Lesson 13-5b Transformations pp Vocabulary to watch out for this lesson: Transformation Translation.
Transformations Review. Recall: Types of Transformations Translations Reflections Rotations.
Unit 5: Motion Geometry Lesson 1: Translating Shapes.
 Students will be able to:  Understand how signs of the number in an ordered pair indicate the point’s location in a quadrant of the coordinate plane.
8.3 Notes Handout.
Lesson 7 Menu Five-Minute Check (over Lesson 6-6) Main Idea and Vocabulary Targeted TEKS Example 1: Draw a Translation Example 2: Translation in the Coordinate.
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Translations, Reflections, and Rotations
Holt CA Course 1 8-7Transformations Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Translations Translations and Getting Ready for Reflections by Graphing Horizontal and Vertical Lines.
In mathematics, a transformation
Translations, Reflections, and Rotations
8-10 Translations, Reflections, and Rotations Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
Holt Geometry 1-7 Transformations in the Coordinate Plane Warm Up 1.Which describes a translation? a) Turnb) Flipc) Slide 2. Which describes a rotation?
Transformations 5-6 Learn to transform plane figures using translations, rotations, and reflections.
Coordinate System Graphing and Ordering Pairs. Coordinate Plane X - Axis Y - Axis Origin Quadrant 1 Quadrant 4Quadrant 3 Quadrant 2.
8-10 Translations, Reflections, and Rotations Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
8-10 Translations, Reflections, and Rotations Course 2 Warm Up Warm Up Problem of the Day Problem of the Day Lesson Presentation Lesson Presentation.
In the diagram above, corresponding points on the two figures are related. Suppose P is any point on the original figure and P’ is the corresponding point.
SOLUTION EXAMPLE 1 Find the image of a glide reflection The vertices of ABC are A(3, 2), B(6, 3), and C(7, 1). Find the image of ABC after the glide reflection.
WARM UP: Describe in words how to rotate a figure 90 degrees clockwise.
9.1 – Translate Figures and Use Vectors
Translations Translations and Getting Ready for Reflections by Graphing Horizontal and Vertical Lines.
4-4 Geometric Transformations with Matrices Objectives: to represent translations and dilations w/ matrices : to represent reflections and rotations with.
FUNCTION TRANSLATIONS ADV151 TRANSLATION: a slide to a new horizontal or vertical position (or both) on a graph. f(x) = x f(x) = (x – h) Parent function.
Warm Up (4, –6) (12, 27) (–6, 2) 1. Subtract 3 from the x-coordinate and 2 from the y-coordinate in (7, –4). 2. Multiply each coordinate by 3 in (4, 9).
Honors Geometry.  We learned how to set up a polygon / vertex matrix  We learned how to add matrices  We learned how to multiply matrices.
The Coordinate Plane. Vocabulary Words Axes - two perpendicular number lines used for locating points Origin – the intersection of the two axes Y-axis.
5-1 The Coordinate Plane Introduction. Coordinate Graph.
Coordinates and Design. What You Will Learn: To use ordered pairs to plot points on a Cartesian plane To draw designs on a Cartesian plane To identify.
Translations 12-2 Warm Up Lesson Presentation Lesson Quiz
Translations and Reflections.  Move the figure  Same shape and size (Congruent) (x ± n, y ± m)  x + n, move every point n units to the right  x –
8-7 Transformation Objective: Students recognize, describe, and show transformation.
2.4 Modeling Motion in Matrices Objectives: 1.Use matrices to determine the coordinates of polygons under a given transformation.
Translations, Reflections, and Rotations. Vocabulary Transformation- changes the position or orientation of a figure. Image- the resulting figure after.
Transformations: Translations & Reflections
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Warm Up A figure has vertices A, B, and C. After a transformation, the image of the figure has vertices A′, B′, and C′. Draw the pre-image and the image.
11.3 Reflections 1/11/17.
Congruence and Transformations
3B Reflections 9-2 in textbook
Objectives Identify reflections, rotations, and translations.
Warm Up Find the coordinates of the image of ∆ABC with vertices A(3, 4), B(–1, 4), and C(5, –2), after each reflection. 1. across the x-axis 2. across.
Preview Warm Up California Standards Lesson Presentation.
Congruence and Transformations
Congruence and Transformations
Congruence and Transformations
Congruence and Transformations
Congruence and Transformations
4-4 Geometric Transformations with Matrices
Translations Lesson #4 Pg. 39.
Translations Lesson #4 Pg. 39.
Graph Transformations
Algebraic Representations of Transformations
Warm Up Graph the pre-image and image of ΔABC with vertices A(4, 0), B(2, -1) and C(-1, 2) that is translated along vector 2. Graph the lines:
Congruence and Transformations
Unit 1 Transformations in the Coordinate Plane
When you are on an amusement park ride,
Chapter 2: Transformations
Translations Lesson #4 Pg. 39.
Geometric Transformations
Maps one figure onto another figure in a plane.
Graphing Points on The Coordinate Plane
Unit 1 Transformations in the Coordinate Plane
Congruent Figures Day 2.
Presentation transcript:

(7.7) Geometry and spatial reasoning The student uses coordinate geometry to describe location on a plane. The student is expected to: (B) graph reflections across the horizontal or vertical axis and graph translations on a coordinate plane. 7.7B Instructional Activity #1

What is a translation? A translation is a movement of a figure or point along a line. A translation can be described by how many units a figure is moved to the left or right and how many units it is moved up or down. A figure and its translated image are always congruent. A B C A B C

If triangle ABC is translated 3 units to the right and 9 units up, what will be the new coordinates of point A ? A B C A B C The original coordinates of point A were (-8, -7). The x-coordinate of point A is -8. When point A is translated 3 units to the right, its new x- coordinate will be -5. The y-coordinate of point A is -7. When point A is translated 9 units up, its new y-coordinate will be 2. The new coordinates of point A will be (-5, 2).