L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Chapter 4 – Bipolar Junction Transistors (BJTs)
Advertisements

Topic 5 Bipolar Junction Transistors
EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
BIPOLAR JUNCTION TRANSISTORS (BJTs)
Chapter 5 Bipolar Junction Transistors
ELECTRICAL ENGINEERING: PRINCIPLES AND APPLICATIONS, Fourth Edition, by Allan R. Hambley, ©2008 Pearson Education, Inc. Lecture 27 Bipolar Junction Transistors.
Pnp transistor ECE Electronics - Dr. S. Kozaitis- Florida Institute of Technology – Fall 2002.
Spring 2007EE130 Lecture 24, Slide 1 Lecture #24 HW#8 ANNOUNCEMENTS Start Problem 4 early! Note that Problem 3f has been revised OUTLINE The Bipolar Junction.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 14 Lecture 14: Bipolar Junction Transistors Prof. Niknejad.
COMSATS Institute of Information Technology Virtual campus Islamabad
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
EE 434 Lecture 22 Bipolar Device Models. Quiz 14 The collector current of a BJT was measured to be 20mA and the base current measured to be 0.1mA. What.
ENE 311 Lecture 10.
Modelling & Simulation of Semiconductor Devices
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
DMT 121 – ELECTRONIC DEVICES
0 Chap. 4 BJT transistors Widely used in amplifier circuits Formed by junction of 3 materials npn or pnp structure.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
L30 01May031 Semiconductor Device Modeling and Characterization EE5342, Lecture 30 Spring 2003 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 21 – Spring 2011
スパイスモデル解析精度比較検証 デジタルトランジスタ 型名: DTC144EE 比較対象のスパイスモデル ビー・テクノロジーのモデル ⇒スパイス・パークからダウンロード ロームのモデル ⇒メーカー・サイトからダウンロード 比較対象のスパイスモデル ビー・テクノロジーのモデル ⇒スパイス・パークからダウンロード.
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
L08 07Feb021 EE Semiconductor Electronics Design Project Spring Lecture 08 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter
1 Concepts of electrons and holes in semiconductors.
Transistor (BJT). Introduction BJT (Bipolar Junction Transistor) Vaccum tubes It comes because it is most advantageous in amplification Why it is called.
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 - Fall 2010
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
1 Concepts of electrons and holes in semiconductors.
L17 March 221 EE5342 – Semiconductor Device Modeling and Characterization Lecture 17 - Spring 2005 Professor Ronald L. Carter
NAME: NIDHI PARMAR ENR.NO.: GUIDED BY: RICHA TRIPATHI.
COURSE NAME: SEMICONDUCTORS Course Code: PHYS 473 Week No. 5.
Professor Ronald L. Carter
Chapter 4 – Bipolar Junction Transistors (BJTs) Introduction
LECTURE 1: BASIC BJT AMPLIFIER -AC ANALYSIS-
Bipolar Junction Transistors (BJT)
Chapter 10 BJT Fundamentals. Chapter 10 BJT Fundamentals.
Electron-hole pair generation due to light
Professor Ronald L. Carter
SMALL SIGNAL ANALYSIS OF CB AMPLIFIER
SMALL SIGNAL ANALYSIS OF CE AMPLIFIER
Chapter 8 Bipolar Junction Transistors
Professor Ronald L. Carter
Electronics Fundamentals
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011
Semiconductor Device Physics
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 15
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 19
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling & Characterization Lecture 18
Professor Ronald L. Carter
Presentation transcript:

L19 March 291 EE5342 – Semiconductor Device Modeling and Characterization Lecture 19 - Spring 2005 Professor Ronald L. Carter

L19 March 292 Project 1 I-V

L19 March 293 Project 1 C-V

L19 March 294 Project 1 Z-parameters

L19 March 295 Project 1 Circuit and Parameters

L19 March 296 Values chosen for SPICE parameters

L19 March 297 The limiting values of Re{Z}, with corner frequency, effective total capacitance and transit time (both raw and adjusted to include rd,inj only).

L19 March 298 Charge components in the BJT From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc.

L19 March 299 Gummel-Poon Static npn Circuit Model C E B B’ I LC I LE I BF I BR I CC - I EC = {IS/Q B }* {exp(v BE /NFV t )- exp(v BC /NRV t )} RCRC RERE R BB Intrinsic Transistor

L19 March 2910 Gummel-Poon Model General Form QXXXXXXX NC NB NE MNAME Netlist Examples Q Q2N3904 IC=0.6, 5.0 Q QNPN.67 NC, NB and NE are the collector, base and emitter nodes NS is the optional substrate node; if unspecified, the ground is used. MNAME is the model name, AREA is the area factor, and TEMP is the temperature at which this device operates, and overrides the specification in the Analog Options dialog.

L19 March 2911 Gummel-Poon Static Model Gummel Poon Model Parameters (NPN/PNP) Adaptation of the integral charge control model of Gummel and Poon. Extends the original model to include effects at high bias levels. Simplifies to Ebers-Moll model when certain parameters not specified. Defined by parameters IS, BF, NF, ISE, IKF, NE determine forward characteristics IS, BR, NR, ISC, IKR, NC determine reverse characteristics VAF and VAR determine output conductance for for and rev RB(depends on i B ), RC, and RE are also included

L19 March 2912 NAMEPARAMETERUNITDEFAULT IStransport saturation currentA1.0e-16 BFideal maximum forward beta-100 NFforward current emission coef.-1.0 VAFforward Early voltageVinfinite ISEB-E leakage saturation currentA0 NEB-E leakage emission coefficient-1.5 BRideal maximum reverse beta-1 NRreverse current emission coeff.-1 VARreverse Early voltageVinfinite ISCB-C leakage saturation currentA0 NCB-C leakage emission coefficient-2 EGenergy gap (IS dep on T)eV1.11 XTItemperature exponent for IS-3 Gummel-Poon Static Par.

L19 March 2913 Gummel-Poon Static Model Parameters NAMEPARAMETERUNITDEFAULT IKFcorner for forward betaAinfinite high current roll-off IKRcorner for reverse betaAinfinite high current roll-off RBzero bias base resistanceW0 IRBcurrent where base resistanceAinfinite falls halfway to its min value RBMminimum base resistanceWRB at high currents REemitter resistanceW0 RCcollector resistanceW0 TNOM parameter - meas. temperature°C27

L19 March 2914 Gummel Poon npn Model Equations I BF = IS  expf(v BE /NFV t )/BF I LE = ISE  expf(v BE /NEV t ) I BR = IS  expf(v BC /NRV t )/BR I LC = ISC  expf(v BC /NCV t ) Q B = (1 + v BC /VAF + v BE /VAR )  {½ +  ¼ + (BF  IBF/IKF + BR  IBR/IKR)    }

L19 March 2915 Gummel Poon npn Model Equations I BF = IS expf(v BE /NFV t )/BF I LE = ISE expf(v BE /NEV t ) I BR = IS expf(v BC /NRV t )/BR I LC = ISC expf(v BC /NCV t ) I CC - I EC = IS(exp(v BE /NFV t - exp(v BC /NRV t )/Q B Q B = {½ +  ¼ +(BF IBF/IKF + BR IBR/IKR)  1/2  }  (1 - v BC /VAF - v BE /VAR ) -1

L19 March 2916 Gummel Poon Base Resistance If IRB = 0, R BB = R BM +(R B -R BM )/Q B If IRB > 0 R B = R BM + 3(R B -R BM )  (tan(z)-z)/(ztan 2 (z)) [  +  i B /(   IRB)] 1/2 -  (  /   )(i B /IRB) 1/2 z = Regarding (i) R BB and (x) R Th on slide 23, R BB = R bmin + R bmax /(1 + i B /I RB )  RB

L19 March 2917 If IRB = 0, R BB = R BM +(R B -R BM )/Q B If IRB > 0 R B = R BM + 3(R B -R BM )  (tan(z)-z)/(ztan 2 (z)) [  +  i B /(   IRB)] 1/2 -  Gummel Poon Base Resistance (  /   )(i B /IRB) 1/2 z = Regarding (i) R BB and (x) R Th on previous slide, R BB = R bmin + R bmax /(1 + i B /I RB )  RB

L19 March 2918 emitter base collector reg 4reg 3reg 2reg 1 coll. base & emitter contact regions Distributed resis- tance in a planar BJT The base current must flow lateral to the wafer surface Assume E & C cur- rents perpendicular Each region of the base adds a term of lateral res.  v BE diminishes as current flows

L19 March 2919 Simulation of 2- dim. current flow Distributed device is repr. by Q 1, Q 2, … Q n Area of Q is same as the total area of the distributed device. Both devices have the same v CE = VCC Both sources have same current i B1 = i B. The effective value of the 2-dim. base resistance is R bb’ (i B ) =  V/i B = R BBTh =   V 

L19 March 2920 Analytical solution for distributed Rbb Analytical solution and SPICE simulation both fit R BB = R bmin + R bmax /(1 + i B /I RB )  RB

L19 March 2921 Distributed base resistance function Normalized base resis- tance vs. current. (i) R BB /R Bmax, (ii) R BBSPICE /R Bmax, after fitting R BB and R BBSPICE to R BBTh (x) R BBTh /R Bmax. FromAn Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.- St.Electr. 41, pp , R BBTh = R BM +  R/(1+i B /I RB )  RB (  R = R B - R BM )

L19 March 2922 References * Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print).