Graphene: electrons in the flatland Antonio H. Castro Neto Seoul, September 2008
Disclaimer Graphene is discovered IQHE measured Andre Geim Kostya Novoselov Philip Kim AHCN, P. Guinea, N. Peres, K. Novoselov, A. Geim, Rev. Mod. Phys. (2008)
A brief history of graphene
5 m
Plus some nanotechnology… 2m2m SiO 2 Si Au contacts graphite optical image SEM image design contacts and mesa
t ~ 2.7 eV Some electronic properties of graphene B t’ ~ 0.1 eV A A Unit cell Nearest neighborsNext Nearest neighbors
In momentum space Dirac Cone Semi-Metal “Ultra relativistic” Solid State at low speed of light
Novoselov et al, Science 306, 666 (2004)
Outline Coulomb impurity in graphene Vitor M. Pereira, Johan Nilsson, AHCN Phys.Rev.Lett. 99, (2007); Vitor M. Pereira, Valeri Kotov, AHCN Phys. Rev. B 78, (2008). Anderson impurity in graphene Bruno Uchoa, Valeri Kotov, Nuno Peres, AHCN Phys. Rev. Lett. 101, (2008); Bruno Uchoa, Chiung-Yuan Lin, Nuno Peres, AHCN Phys.Rev.B 77, (2008). Johan Nilsson Bruno UchoaVitor Pereira Valeri Kotov Nuno Peres
Pereira et al., Phys.Rev.Lett. 99, (2007);
3D Schroedinger Coupling
Undercritical Supercritical
Andrei’s group
HIC Neutron stars
1 nm
E N(E) Anderson’s Impurity Model T>T K
Non-interacting: U=0 Broadening Energy V=0
Mean-Field
The impurity moment can be switched on and off! U = 1 eV n_down V=1eV, e 0 =0.2 eV n_up
U = 40 meV U = 0.1 eV
Conclusions Impurities in graphene behave in an unusual way when compared to normal metals and semiconductors. One can test theories of nuclear matter under extreme conditions. Control of the magnetic moment formation of transition metals using electric fields.