Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda,

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Study on the Injection System for Compact Cyclotron Mass Spectrometry Do Gyun Kim, Joonyeon Kim, H. C. Bhang Department of Physics, Seoul National University.
Hadron physics with GeV photons at SPring-8/LEPS II
Progress on the 40 Ca(α,  ) 44 Ti reaction using DRAGON Chris Ouellet Supervisor: Alan Chen Experiment leader: Christof Vockenhuber ● Background on the.
Direct measurement of 4 He( 12 C, 16 O)  reaction near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano,
Bunch shape monitor for Linac-4 A.V.Feschenko Institute For Nuclear Research (INR), Moscow , Russia.
Cairo University Electrical Engineering – Faculty of Engineering Cyclotrons Yasser Nour El-Din Mohammed Group 2 - Accelerators and Applications Supervisors.
Measurement of pd breakup cross sections at E/A = 13 MeV in the off-plane star configuration Yukie Maeda (University of Miyazaki) H. Shimoda, K. Sagara,
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
Cross section measurements for analysis of D and T in thicker films Liqun Shi Institute of Modern Physics, Fudan University, Shanghai, , People’s.
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Carbon Injector for FFAG
Direct measurement of 12 C + 4 He fusion cross section at Ecm=1.5MeV at KUTL H.Yamaguchi K. Sagara, K. Fujita, T. Teranishi, M. taniguchi, S.Liu, S. Matsua,
Measurement of 4 He( 12 C, 16 O)  reaction in Inverse Kinematics Kunihiro FUJITA K. Sagara, T. Teranishi, M. Iwasaki, D. Kodama, S. Liu, S. Matsuda, T.
1 CPOTS – 3 rd ERASMUS Intensive Program Introduction to Charged Particle Optics: Theory and Simulation
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Medium heavy Λ hyper nuclear spectroscopic experiment by the (e,e’K + ) reaction Graduate school of science, Tohoku University Toshiyuki Gogami for HES-HKS.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
Ruđer Bošković Institute, Zagreb, Croatia CRP: Development of a Reference Database for Ion Beam Analysis Measurements of differential cross sections for.
Study of 58Ni excited states by (p, p’) inelastic scattering
Proton resonance scattering of 7 Be H. Yamaguchi, Y. Wakabayashi, G. Amadio, S. Kubono, H. Fujikawa, A. Saito, J.J. He, T. Teranishi, Y.K. Kwon, Y. Togano,
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
Study of the 40 Ca(  ) 44 Ti reaction at stellar temperatures with DRAGON Christof Vockenhuber for the DRAGON collaboration Vancouver, B.C., Canada.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Conception of cross section 1) Base conceptions – differential, integral cross section, total cross section, geometric interpretation of cross section.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
ICIS2015 in NY Y.HIGURASHI Y. Higurashi (RIKEN Nishina center) 1.Introduction RIKEN RIBF and RIKEN 28GHz SC-ECRIS 2.Emittance measurements 1.4D.
GAN Zaiguo Institute of Modern Physics, Chinese Academy of Sciences Alpha decay of the neutron-deficient uranium isotopes.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Direct measurement of the 18 Ne( , p) 21 Na reaction with a GEM – MSTPC Takashi Hashimoto CNS, University of Tokyo Collaborators CNS S. Kubono, H. Yamaguchi,
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
A. Zelenski a, G. Atoian a *, A. Bogdanov b, D.Raparia a, M.Runtso b, D. Steski a, V. Zajic a a Brookhaven National Laboratory, Upton, NY, 11973, USA b.
Search for QFS anomaly in pd - breakup reaction below E p = 19 MeV Shuntaro Kimura, K. Sagara, S. Kuroita, T. Yabe, M. Okamoto, K. Ishibashi, T. Tamura,
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Lambda hypernuclear spectroscopy up to medium heavy mass number at JLab Hall-C Graduate School of Science, Tohoku University Toshiyuki Gogami for the HES-HKS.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
S. Bettoni, R. Corsini, A. Vivoli (CERN) CLIC drive beam injector design.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
100MeV/u 12 C+ 12 C Scattering at RCNP Weiwei Qu 、 Gaolong Zhang 、 Satoru Terashima 、 Isao Tanihata 、 Chenlei Guo 、 Xiaoyun Le 、 Hoo Jin Ong 、 Harutaka.
Non-π mode pre-bunching system IPNS, KEK: H. Miyatake, M. Okada, K. Niki, Y. Hirayama, N. Imai, H. Ishiyama, S.C. Jeong, I. Katayama, M. Oyaizu, Y.X. Watanabe.
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
A Compact FFAG for Radioisotope Production D. Bruton R. Barlow, R. Edgecock, and C.J. Johnstone.
S. A. Rastigeev , A. R Frolov, A. D. Goncharov, V. F. Klyuev, E. S
Old Dominion University, Norfolk, Virginia 23529, USA
School of Physics and Nuclear Energy Engineering
Resonances in the 12C(α,γ)16O reaction
the s process: messages from stellar He burning
Labor of Ion Beam Physics, ETHZ
Large Booster and Collider Ring
Direct measurement of 4He(12C,16O)g reaction at KUTL*
Direct measurement of 12C + 4He fusion cross section at Ecm=1
PHL424: Semi-classical reaction theory
1. Introduction Secondary Heavy charged particle (fragment) production
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Recoil charge state distributions in 12C(a,g)16O at DRAGON
November 14, 2008 The meeting on RIKEN AVF Cyclotron Upgrade Progress report on activity plan Sergey Vorozhtsov.
PHL424: Semi-classical reaction theory
Maria Theodora Rosary, 相良建至, 寺西高, 藤田訓裕,
Physics Design on Injector I
The Nanosecond bunching system at KIGAM Tandem Accelerator
Presentation transcript:

Direct measurement of the 4 He( 12 C, 16 O)  cross section near stellar energy Kunihiro FUJITA K. Sagara, T. Teranishi, T. Goto, R. Iwabuchi, S. Matsuda, K. Nakano, N. Oba, M. Taniguchi and H. Yamaguchi Department of Physics, Kyushu University, Japan Kyushu University Tandem Laboratory (KUTL)

2 Introduction 12 C/ 16 O ratio: after helium burning process –affects evolution of heavy stars – supernova or white dwarf –abundance of element of universe Cross Section of 4 He( 12 C, 16 O)  –very small (~10 -8 nb) – coulomb barrier –varies drastically around stellar energy(0.3MeV) Extrapolation with experimental data E cm (MeV)  (nbarn) x our experiment ( 10% accuracy) extrapolation stellar energy E1 E2

3 16 O measurement ① 4 He beam +  measurement ② 16 N decay measurement ③ direct 16 O measurement with 12 C beam and 4 He target –high efficiency (~ 40%: charge fraction) –total S-factor can be obtained necessary components for E cm =0.7MeV experiment –background separation system: N BG /N 12 C ratio of –thick gas target : ~25 Torr x 3 cm –high intensity beam: ~ 10 p  A Y( 16 O) ~ 5 counts/day → 1 month experiment for 10% error Cross section (S=const.) 10 -5

4 Experimental Setup Layout of Kyushu University Tandem Laboratory (KUTL) Detector (Si-SSD) Sputter ion source 12 C beam Tandem Accelerator Final focal plane (mass separation) Blow in windowless 4 He gas target Long-time chopper chopper buncher 16 O 12 C Recoil Mass Separator (RMS) E cm = 2.4~0.7 MeV E( 12 C)=9.6~2.8 MeV E( 16 O)=7.2~2.1 MeV Tandem RMS

5 TMP3 TMP4 MBP2 TMP2 TMP5 MBP1 beam TMP1 DP 1500 l/s 3000 l/s 330 l/s 520 l/s 350 l/s Windowless Gas Target Differential pumping system (side view) center pressure: 24 Torr - post stripper is not necessary center pressure: 24 Torr - post stripper is not necessary effective length: 3.98 ± 0.12 cm (measured by p+  elastic scattering) effective length: 3.98 ± 0.12 cm (measured by p+  elastic scattering) → target thickness is sufficient for our experiment (limited by energy loss of 12 C beam) (limited by energy loss of 12 C beam) 24 Torr SSD: beam monitor 4.5cm Blow-In Gas Target (BIGT) –windowless & high confinement capability beam

6 BG Reduction and 16 O Detection movable slits v dispersion m dispersion Recoil Mass Separator – 12 C/ 16 O separation : ratio of –angular acceptance: ±1.9deg 100% 16 O can be observed Background 12 C –charge exchange –multiple scattering  p/q value is nearly equal to 16 O Background reduction ① RF deflector (Long-Time Chopper) –background reduction ~10 -3 ② movable slits –combination with trajectory analysis

7 Trajectory Analysis 12 C backgrounds were rejected by slit control based on trajectory analysis 16 O MeV (E cm =1.5MeV) 12 C MeV 12 C MeV slits target EDD1D2 final focal plane (detector) v dispersion

8 E cm =2.4MeV experiment beam: 12 C 2+, frequency: 6.063MHz –energy: 9.6MeV, intensity: ~35pnA target: 4 He gas ~ 23.9 Torr x 3.98 cm observable: 16 O ± 0.3 MeV –abundance = 36.9 ± 2.1 % = efficiency 29hours data 941 counts 16 O

9 E cm =1.5 MeV experiment beam: 12 C 1+, frequency: 3.620MHz –energy: 6.0MeV, intensity: ~150pnA target: 4 He gas ~ 15.0 Torr x 3.98 cm observable: 16 O 3+, 4.5 ± 0.3 MeV –abundance = 40.9 ± 2.1 % = efficiency B.G. were generated from hitting walls of magnet 15 hours data 16 O 29 counts

10 Cross Section and S-factor 2.4MeV – 1.5MeV – –need much more statistics –background reduction is not sufficient future plan D. Schurmann et al. Eur. Phys. J. A 26, (2005) Our data (2009, 2010), 2010

11 Summary Direct 16 O measurement via 4 He( 12 C, 16 O)  reaction was proposed to determine 12 C/ 16 O abundance ratio in stars Blow-in type windowless gas target was developed, and thickness of 24 Torr x 3.98 cm was achieved Background reduction was performed by using RMS, RF- deflector and movable slits E cm = 2.4 MeV experiment –  = 64.6 nb, S-factor = 89.0 keV b E cm = 1.5 MeV experiment –  ~ 1.0 nb, S-factor ~ 30 keV b –need much more statistics, and background reduction

BACKUP 12

13 Charge State Fraction of 16 O Our data W. Liu et al. / Nucl. Instr. and Meth. A 496 (2003) 198–214

12 C beam TOF information is needed for background rejection pulsed beam: buncher, chopper TOF [ch] width: 5.43ns efficiency: 33.7 % 12 C - sin wave frequency: MHz voltage: 2.8kVpp accel decel slit sin wave frequency: MHz voltage: 3.0kVpp Chopper Buncher 12 C beam 12 C foil Si-SSD

Normal operation of tandem accelerator. Accel-decel operation of tandem accelerator. At low acceleration voltage, focusing becomes weak, and beam transmission decreases. By alternative focus-defocus, Focusing becomes strong, and Beam transmission increases.

By the accel-decel operation, ・ 10 times higher beam transmission is obtained by strong focusing. ・ 17.5 times more intense beam can be injected, due to higher electric power necessary for accel-decel operation. By a large aperture (12 f ) gas stripper, spread in beam energy and angle is decreased, and beam transport to the target is ~3 times increased. Totally, beam intensity is times increased. normal operation accel-decel operation Al shorting bars for accel-decel operation

pass only reaction products ( 16 O) which are spread in time. f 2 =3×f 1 V 2 =V 1 /9 f 1 =6.1MHz V 1 =±24.7kV V 3 =23.7kV reject BG pass reaction products + Flat-bottom voltage RF-Deflector (Long Time Chopper)