SPL-SB and NF Beam Window Studies Stress Analysis Matt Rooney, Tristan Davenne, Chris Densham March 2010.

Slides:



Advertisements
Similar presentations
WP2: Targets Proposed Outline Work Programme Chris Densham.
Advertisements

Matt Rooney RAL The T2K Beam Window Matt Rooney Rutherford Appleton Laboratory BENE November 2006.
EUROnu Beam Window Studies Stress and Cooling Analysis Matt Rooney, Tristan Davenne, Chris Densham Strasbourg June 2010.
The Current T2K Beam Window Design and Upgrade Potential Oxford-Princeton Targetry Workshop Princeton, Nov 2008 Matt Rooney.
KT McDonald Target Studies Weekly Meeting July 10, Power Deposition in Graphite Targets of Various Radii K.T. McDonald, J. Back, N. Souchlas July.
Mike Fitton Engineering Analysis Group Design and Computational Fluid Dynamic analysis of the T2K Target Neutrino Beams and Instrumentation 6th September.
Chris Densham RAL High Power Targets Group To be a ‘one-stop shop’ (P. Hurh) for target technology Enable optimum physics performance via sound engineering.
Michael Butzek, Jörg Wolters, Bernhard Laatsch Mitglied der Helmholtz-Gemeinschaft Proton beam window for High Power Target Application 4th.
Thermal Shock Measurements and Modelling for Solid High-Power Targets at High Temperatures J. R. J. Bennett 1, G. Skoro 2, J. Back 3, S. Brooks 1, R. Brownsword.
BNL Review - December 12, 2005 MERIT Experiment Window Study - Proton Beam Windows - Optical Windows N. Simos, PhD, PE Energy Sciences & Technology Department.
R.Valbuena NBI March 2002 CNGS Decay Pipe Entrance Window Structural and Thermal Analysis A.Benechet, P.Cupial, R.Valbuena CERN-EST-ME.
Studies of solid high-power targets Goran Skoro University of Sheffield HPT Meeting May 01 – 02, 2008 Oxford, UK.
Status of T2K Target 2 nd Oxford-Princeton High-Power Target Workshop 6-7 th November 2008 Mike Fitton RAL.
Megawatt targets (and horn) for Neutrino Super-Beams RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt Rooney,
T2K Target & Secondary Beamline - progress towards a neutrino Superbeam? Chris Densham.
LS-DYNA Simulations of Thermal Shock in Solids Goran Skoro University of Sheffield.
Simulations of Pressure Waves induced by Proton Pulses In search of the answer to the fundamental question: are materials indeed stronger than what we.
Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta Chris Densham STFC Rutherford Appleton Laboratory, UK 1 st joint meeting of EUROnu WP2 (Superbeam)
The JPARC Neutrino Target
Mercury Beam Dump Simulations Tristan Davenne Ottone Caretta STFC Rutherford Appleton Laboratory, UK 2 nd Princeton-Oxford High Power Target Meeting 6-7.
Above: Power deposition in the superconducting magnets and the tungsten-carbide + water shield inside them, according to a FLUKA simulation Approximately.
Solid Target Options NuFACT’00 S. Childress Solid Target Options The choice of a primary beam target for the neutrino factory, with beam power of
Target Options for a Neutrino Factory Chris Densham, Otto Caretta, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt Rooney Sept. 20, 2011.
Packed Bed Target for Euronu DAVENNE, Tristan (RAL) ; LOVERIDGE, Peter (RAL) ; CARETTA, Ottone (RAL) ; DENSHAM, Chris (RAL) ; ZITO, Marco (CEA Saclay)
Megawatt target studies for Neutrino Super-Beams RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Otto Caretta,
Awake CNGS Window and Shutter Szymon Sroka, Antonio Perillo-Marcone — EN/STI/TCD Thermo-Mechanical Calculations.
FETS-HIPSTER (Front End Test Stand – High Intensity Proton Source for Testing Effects of Radiation) Proposal for a new high-intensity proton irradiation.
Harold G. Kirk Brookhaven National Laboratory A MW Class Target System for Muon Beam Production AAC 2014 San Jose, Ca July 14-18, 2014.
Proton Accelerators for Science and Innovation Workshop at Fermilab
A new design for the CERN to Fréjus neutrino beam Marco Zito (IRFU/CEA-Saclay) For the EUROnu WP2 team NUFACT11 Geneva August 2nd 2011.
KT McDonald MAP Spring Meeting May 30, Target System Concept for a Muon Collider/Neutrino Factory K.T. McDonald Princeton University (May 28, 2014)
1 cm diameter tungsten target Goran Skoro University of Sheffield.
BNL Neutrino Long Baseline Neutrino Initiative N. Simos, BNL NWG Baseline = 2540 Km Homestake.
Study of a new high power spallation target concept
Horn design for the CERN to Fréjus neutrino Super Beam Nikolas Vassilopoulos IPHC/CNRS.
T2K Secondary Beamline – Status of RAL Contributions Chris Densham, Mike Fitton, Vishal Francis, Matt Rooney, Mike Woodward, Martin Baldwin, Dave Wark.
Summary Why consider a packed bed as a high power target?
1 Design of Proton Driver for a Neutrino Factory W. T. Weng Brookhaven National Laboratory NuFact Workshop 2006 Irvine, CA, Aug/25, 2006.
Reducing shock in the Neutrino Factory target Goran Skoro (University of Sheffield) UKNF Meeting 11 January 2006.
BNL E951 BEAM WINDOW EXPERIENCE Nicholas Simos, PhD, PE Neutrino Working Group Brookhaven National Laboratory.
E951 Experiment Target Response Re-evaluation N. Simos, H. Kirk, P. Thieberger Brookhaven National Laboratory K. McDonald Princeton University.
COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA.
Investigation of a “Pencil Shaped” Solid Target Peter Loveridge, Mike Fitton, Ottone Caretta High Power Targets Group Rutherford Appleton Laboratory, UK.
Megawatt targets for Neutrino Super-Beams (Apr. 4, 2013) RAL High Power Targets Group: Chris Densham, Tristan Davenne, Mike Fitton, Peter Loveridge, Matt.
Superbeam target work at RAL Work by: Ottone Caretta, Tristan Davenne, Peter Loveridge, Chris Densham, Mike Fitton, Matt Rooney (RAL) EURONu collaborators:
BENE/CARE Frascati November 2006 CJ Densham CCLRC Rutherford Appleton Laboratory Solid target studies in UK for T2K and for a neutrino factory JRJ.
J-PARC neutrino experiment Target Specification Graphite or Carbon-Carbon composite cylindrical bar : length 900mm, diameter 25~30mm The bar may be divided.
Mitglied der Helmholtz-Gemeinschaft Jörg Wolters, Michael Butzek Focused Cross Flow LBE Target for ESS 4th HPTW, Malmö, 3 May 2011.
High Intensity Beam Test of Beryllium for Target and Beam Window Applications Presented by: Brian Hartsell Contributors: Kavin Ammigan, Patrick Hurh NBI.
1 BROOKHAVEN SCIENCE ASSOCIATES N. Simos, BNL EUROnu-IDS Target Meeting December 15-18, 2008 Superbeam Horn-Target Integration.
Target/Horn Station for ESS ν SB Nikolaos Vassilopoulos IPHC/CNRS.
Status of UK contribution to LBNF beam and target system Chris Densham, Tristan Davenne, Otto Caretta, Mike Fitton, Peter Loveridge, Joe O’Dell, Andrew.
ESSnuSB Target Chris Densham, Tristan Davenne STFC Rutherford Appleton Laboratory 26 th May 2014.
Target/Horn Station for ESS ν SB Nikolaos Vassilopoulos IPHC/CNRS.
Packed Bed Target Design Concept (for EURONu) Tristan Davenne, Ottone Caretta, Peter Loveridge, Chris Densham (RAL); Andrea Longhin, Marco Zito (CEA Saclay)
Target Proposal Feb. 15, 2000 S. Childress Target Proposal Considerations: –For low z target, much less power is deposited in the target for the same pion.
High Power Target Experience with T2K Chris Densham T2K Beamline Collaboration including RAL / KEK / Kyoto.
ENG/BENE, ENG Plenary, 16 March 2005 The New UK Programme for Shock Studies J R J Bennett RAL.
Design for a 2 MW graphite target for a neutrino beam Jim Hylen Accelerator Physics and Technology Workshop for Project X November 12-13, 2007.
T2K Target status PASI Meeting Fermilab 11 th November Chris Densham STFC Rutherford Appleton Laboratory On behalf of the T2K beam collaboration.
DUNE/LBNF Target Studies: Physics John Back University of Warwick 12 th April
EUROnu Super Beam Work package Marco Zito (IRFU/CEA-Saclay) For the WP2 team EURONu Review CERN April
Irradiated T2K Ti alloy materials test plans
P. Sievers/CERN. A. Ushakov/Univ. Hamburg. S. Riemann/DESY-Zeuthen.
Tungsten Powder Test at HiRadMat Scientific Motivation
Peter Loveridge High Power Targets Group
Beam Window Studies for Superbeams
EUROnu Beam Window Studies Stress and Cooling Analysis
Superbeam Horn-Target Integration
SPL-SB and NF Beam Window Studies Stress Analysis
Presentation transcript:

SPL-SB and NF Beam Window Studies Stress Analysis Matt Rooney, Tristan Davenne, Chris Densham March 2010

Variables studied Beam parameters: Power: 4 MW (Divided as1 MW each for four targets/windows) Energy: 5 GeV 1.5 x protons per pulse Frequency: 12.5 Hz Pulse length: 5 microseconds Beam sigma: 4 mm Design considerations: Materials: Beryllium (S65C), Titanium alloy (Ti-6Al-4V) Cooling methods: direct forced convection helium and circumferential water Matt Rooney, March 2010 Beam parameters taken from EUROnu WP2 Note 09-11

Typical ANSYS model showing cooling options Matt Rooney, March 2010 ANSYS Multiphysics v11 used with coupled field elements (axisymmetric model)

Energy deposition profile Matt Rooney, March 2010 NOTE: Data produced by Tristan Davenne (RAL) using Fluka. A Gaussian approximation of this data has been used in ANSYS for simplicity.

Helium cooled Ti-6Al-4V window (like T2K) is not an option Matt Rooney, March mm thick titanium alloy window Direct helium cooling (assumes 1000 W/m 2 K) Peak stress of 500 MPa is above yield stress for titanium at 800 °C. 50 pulses (4 seconds)

Circumferentially water cooled beryllium window Matt Rooney, March mm thick beryllium window Circumferentially water cooled (assumes 2000 W/m 2 K) Max temp ~ 180 °C Max stress ~ 50 MPa (yield ~ 270 MPa) Acceptable!

High velocity helium cooled beryllium window Matt Rooney, March mm thick beryllium window Direct helium cooling (assumes 1000 W/m 2 K) Max temp 109 °C Max stress 39 Mpa Better!

‘Shock’ stress due to single pulse in beryllium window Matt Rooney, March 2010 Temp jump of 22 °C results in 50 MPa peak stress giving a safety factor of around 4-5.

4 MW window for neutrino factory? Matt Rooney, March 2010 Yield strength of 260°C is around 200 MPa. This leaves a safety factor of about 2 for a beryllium neutrino factory window with these beam parameters. 50 pulses (1 second)

Conclusions 1.High frequency beam makes cooling the main challenge for any window. Actual thermal stress due to each pulse is within acceptable limits. 2.Difficulty in cooling a titanium window makes this a bad choice for SPL beam parameters. 3.High frequency beam with low protons per pulse makes beryllium window a possibility due to its high thermal conductivity. Either direct helium cooling on the beam spot or circumferential water cooling may be feasible. 4.Neutrino factory window may be possible with this beam parameters, though safety factor is small and radiation damage would quickly become an issue. Matt Rooney, March 2010