Gaetano Granozzi Francesco Sedona (PhD thesis) TiOx NANOSTRUCTURES ON A MONOCRYSTALLINE Pt SUBSTRATE Università degli Studi di Padova Dipartimento di Scienze.

Slides:



Advertisements
Similar presentations
Fuel Cells and a Nanoscale Approach to Materials Design Chris Lucas Department of Physics Outline PEM fuel cells (issues) A nanoscale approach to materials.
Advertisements

1 Special Properties of Au Nanocatalysts Maryam Ebrahimi Chem 750/7530 March 30 th, 2006.
On the Differences between SERS and Infrared Reflection Absorption Spectra of CO 2 on Cold-deposited Copper M.Lust, A.Pucci,Universität Heidelberg A.Otto,
Aretouli E. Kleopatra 20/2/15 NCSR DEMOKRITOS, Athens, Greece
John Flake, Semiconductors / Electronic Materials Surface Functionalization of Silicon Nanowires, BOR-RCS $103k/3yrs Significance: Silicon nanowires are.
Thermodynamics of Oxygen Defective Magnéli Phases in Rutile: A First Principles Study Leandro Liborio and Nicholas Harrison Department of Chemistry, Imperial.
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
An STM investigation of the interaction and ordering of pentacene molecules on the Ag/Si(111)-(√3x√3)R30° surface Ph. Guaino et. al (NCSR), Dublin City.
DIAMOND Decommissioning, Immobilisation and Management of Nuclear Wastes for Disposal Density Functional Theory study of defects in zirconolite Jack Mulroue.
High-temperatures in-situ XRD studies of CrN and TiN films Experimental: XRD at high T Experimental: XRD at high T XRD patterns, lattice parameter evolution.
Marie Curie Actions Early Stage Researcher Training Network Interdisciplinary Nanoscience Center (iNANO) Department of Physics and Astronomy University.
Nanowire Presentation Alexandra Ford 4/9/08 NSE 203/EE 235.
1 Catalyst Fundamentals 朱信 Hsin Chu Professor Dept. of Environmental Eng. National Cheng Kung University.
NIST ARDA/DTO review 2006 Materials David P. Pappas Seongshik Oh Jeffrey Kline.
MORPHOLOGY AND STRAIN-INDUCED DEFECT STRUCTURE OF FE/MO(110) ULTRATHIN FILMS: IMPLICATIONS OF STRAIN FOR MAGNETIC NANOSTRUCTURES I. V. Shvets Physics Department.
Alloy Formation at the Co-Al Interface for Thin Co Films Deposited on Al(001) and Al(110) Surfaces at Room Temperature* N.R. Shivaparan, M.A. Teter, and.
Alloy Formation at the Epitaxial Interface for Ag Films Deposited on Al(001) and Al(110) Surfaces at Room Temperature* N.R. Shivaparan, M.A. Teter, and.
Nucleation of gold nanoparticles on graphene from Au 144 molecular precursors Andrei Venter 1, Mahdi Hesari 2, M. Shafiq Ahmed ­1, Reg Bauld 1, Mark S.
Deuterium retention mechanisms in beryllium M. Reinelt, Ch. Linsmeier Max-Planck-Institut für Plasmaphysik EURATOM Association, Garching b. München, Germany.
Chemical Vapor Deposition ( CVD). Chemical vapour deposition (CVD) synthesis is achieved by putting a carbon source in the gas phase and using an energy.
Spectroscopy of Hybrid Inorganic/Organic Interfaces Vibrational Spectroscopy Dietrich RT Zahn.
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Thermal stability of the ferromagnetic in-plane.
Metal Nanoparticle/Carbon Nanotube Catalysts Brian Morrow School of Chemical, Biological and Materials Engineering University of Oklahoma.
Methods in Surface Physics Experimentation in Ultra-High Vacuum Environments Hasan Khan (University of Rochester), Dr. Meng-Fan Luo (National Central University)
Adsorption and Reaction of ortho-Carborane on Pt(111) David Siap August 3, 2006 REU Program Advisors: Professor Trenary Aashani Tillekaratne University.
Preparation of Clean III-V Semiconductor Surfaces for NEA Photocathodes Yun Sun 1, 2, Zhi Liu 3, Francisco Machuca 3, Piero Pianetta 1 and William E. Spicer.
Stanford Synchrotron Radiation Laboratory More Thin Film X-ray Scattering: Polycrystalline Films Mike Toney, SSRL 1.Introduction (real space – reciprocal.
1 K. Overhage, Q. Tao, G. M. Jursich, C. G. Takoudis Advanced Materials Research Laboratory University of Illinois at Chicago.
Absorption Spectra of Nano-particles
Nitrogen-Doped Carbon
5. ORR activity The catalytic layers used in proton exchange membrane fuel cell (PEMFC) are classically based on Pt particles supported on a high surface.
UIC Physics Tessa Cooper Materials Science and Engineering Rutgers University Advisors: Dr. R. Klie and Q. Qiao Department of Physics, University of Illinois.
Photo physics and photo chemistry of ice films on graphite Department of Applied Physics Chalmers and Göteborg University Dinko Chakarov Johan Bergeld.
Epitaxial superconducting refractory metals for quantum computing
Erie H. Moralesa), M. Batzillb) and U. Diebolda)
Heterometallic Carbonyl Cluster Precursors Heterometallic molecular cluster precursor - mediate transport and growth of nanoscale bimetallic particles.
In-situ Scanning Tunneling Microscopy Study of Bismuth Electrodeposition on Au(100) and Au(111) S.H. Zheng a, C.A. Jeffrey a,b, D.A. Harrington b E. Bohannan.
NANOPARTICLES Their application in probing Glass Transition Temperature of Polymers. By RATAN KISHORE PUTLA Mechanical & Aerospace Engineering Oklahoma.
Electronic Structure and Chemical Reactivity
1 Institute of Isotopes, Budapest, Hungary; 2 Research Institute for Technical Physics and Materials Science, Budapest Hungary; 3 Chemical Physics of Materials,
Xiukai Li et al., Applied Catalysis A: General 429 (2012) 31
S. A. Giamini. Graphene A hexagonal honeycomb lattice of carbon. In its basic form it is a one-atom thick (2D) sheet. Interesting properties: Better electric.
0-D, 1-D, 2-D Structures (not a chapter in our book!)
Updates of Iowa State University S. Dumpala, S. Broderick and K. Rajan Sep – 18, 2013.
Ion Beam Analysis of the Composition and Structure of Thin Films
N.Vamsi Krishna Bore, M.T.; Pham, H. N.; Switzer, E. E.; Ward, T. L.; Fukuoka, A.; Datye, A. K. J. Phys. Chem. B 2005, 109, 2873.
Oxidation of alcohols and sugars using Au/C catalysts Ramana Murthy.P M.Comotti,C.DellaPina,R.Matarrese,M.Rossi,A.Siani, Appl.Catal.A:Gen.291(2005)
The composition and structure of Pd-Au surfaces Journal of Physical Chemistry B, 2005, 109, C. W. Yi, K. Luo, T. Wei, and D. W. Goodman Bimetallic.
Thermal annealing effect of tetrahedral amorphous carbon films deposited by filtered vacuum arc Youngkwang Lee *†,Tae-Young Kim*†, Kyu Hwan Oh†, Kwang-Ryeol.
Adsorption of L-cysteine and co-adsorption of L-cysteine and Au on a rutile TiO 2 (110) surface Evren Ataman, Cristina Isvoranu, Jesper Andersen, Joachim.
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Scanning Tunneling Microscopy Studies of Single-Crystal Niobium Oxidation Natalie A. Kautz, Yichen Yu, Kevin D. Gibson.
Paul Frank Institute of Solid State Physics, Graz University of Technology Financially supported by the Austrian Science Fund.
The impact of nanoscience on heterogeneous catalysis  Alexis T. Bell  From Science 2003,299,  Impact factor=27 Viewpoint.
Activity and Stability of Ceria Supported Bimetallic Ni-Au in the Reforming of Ethanol By Sakun Duwal.
Nucleate pool boiling heat transfer of TiO2–R141b nanofluids
Ching-Rong “Ada” Chung Mentor: Dr. Jing Zhou Department of Chemistry
Motivation Experimental method Results Conclusion References
SiO2 coating of TiO2 nanoparticles from DBD in a gaseous mixture of SiH4 and N2 Dipl.-Phys. Sebastian Dahle Institut für Energieforschung und.
University of Leicester
The Role of Surface Modification on Nanoparticle Formation by Atomic Layer Deposition Stacey F. Bent, Department of Chemical Engineering, Stanford University.
Plasma-Gas-Condensation Deposition of Nb Clusters to Obtain Giant Permittivity 9 Jan 2013 Jennifer DeCerbo Materials Engineer AFRL/RQQE.
SYNTHESIS AND CHARACTERIZATION OF SILICA THIN FILMS
Surfaces and Multilayers &
Multi-scale modeling of the evolution of oxygen phases on Pt surfaces under realistic reactive conditions Aravind Asthagiri, Chemical Engineering Department,
Reactions of unsaturated oxygenates on metal surfaces
Quantum Mechanical Control of Surface Chemical Reactivity
(1x3) bilayer Gold monolayer film on the TiOx surface
Molecular Dynamics Study on Deposition Behaviors of Au Nanocluster on Substrates of Different Orientation S.-C. Leea, K.-R. Leea, K.-H. Leea, J.-G. Leea,
Andrew P. Wong, Qiuli Liu, John R. Regalbuto
Presentation transcript:

Gaetano Granozzi Francesco Sedona (PhD thesis) TiOx NANOSTRUCTURES ON A MONOCRYSTALLINE Pt SUBSTRATE Università degli Studi di Padova Dipartimento di Scienze Chimiche

Outline  Motivations  A brief summary of the results on TiO x nanophases on Pt(111)  Use of the TiO x nanostructures for growing ordered arrays of Au nanoclusters with low dispersion  Conclusions and Perspectives - Sedona et al. Ultrathin TiO x films on Pt(111): a LEED, XPS and STM investigation J. Phys. Chem. B 2005, 109, Sedona et al. Ultrathin wagon-wheel-like TiO x phases on Pt(111): a combined LEED and STM investigation J. Phys. Chem. B 2006, 110, Finetti et al. Core and Valence Band Photoemissionn Spectroscopy of Well-Ordered Ultrathin TiO x Films on Pt(111) J. Phys. Chem. C , Barcaro et al. The structure of a TiO x zigzag-like monolayer on Pt(111) J. Phys. Chem. C 2007,111, Sedona et al. Ordered arrays of Au nanoclusters by TiO x ultrathin templates on Pt(111) J. Phys. Chem. C 2007, 111, 8024

Motivations for studying ultrathin oxide films (up to ca. 10 monolayers)  oxide functionality integrated in epitaxial devices (e.g. High-K dielectrics) Metal particles 2D oxideMetallic substrate  a way to control defectivity and to study its role  model systems for oxide supported catalysts  if the ultrathin film is nanostructured, it can act as a template for growing ordered metallic nanocluster arrays

Ultrathin Oxide films on metals: Methodology of preparation Preparations in vacuo (UHV) to drive the growth toward specific chemical composition, structure and morphology Reactive deposition metal Oxidant agent (molecular oxygen, atomic oxygen, water,NO 2 ) oxide film crystalline substrate Deposition parameters to be optimised in order to obtain a nanostructured film:  Choice of the substrate  Deposition rate  Substrate temperature  Nature and concentration (partial pressure) of the oxidising agent  Temperature and time of heat treatments

TiO x nanostructures on Pt(111) preparative procedure: Deposition reactive RT in 1x10 -7 mbar O 2 Structural ordering of the film with a post-annealing Changing the Ti dose and post annealing condition (temperature and partial pressure of O 2 ) 7 different surface stabilized phases

Annealing O 2 pressure (Pa) 5x (UHV) ≥2≥2≥2≥2 equivalent monolayer (MLE) k-TiO x z-TiO x z’-TiO x w-TiO x w’-TiO x rect-TiO 2 rect’-TiO 2 TiO x films on Pt(111) Summary of Data Phase diagram: STM data

≥2≥2≥2≥ Annealing O 2 pressure (Pa) equivalent monolayer (MLE) (UHV) x10 -4 k-TiO x z-TiO x z’-TiO x w-TiO x w’-TiO x rect-TiO 2 rect’-TiO 2 Chemical characterization TiO x films on Pt(111) Results: XPS

≥2≥2≥2≥ Annealing O 2 pressure (Pa) equivalent monolayer (MLE) (UHV) x10 -4 k-TiO x z-TiO x z’-TiO x w-TiO x w’-TiO x rect-TiO 2 rect’-TiO eV Chemical characterization Ti 2p Strongly oxidized phases higher BE peak two chemically shifted Ti 2p component TiO x films on Pt(111) Results: XPS

≥2≥2≥2≥ Annealing O 2 pressure (Pa) equivalent monolayer (MLE) (UHV) x10 -4 k-TiO x z-TiO x z’-TiO x w-TiO x w’-TiO x rect-TiO 2 rect’-TiO eV Chemical characterization Ti 2p two chemically shifted Ti 2p component More reduced phases lower BE peak eV TiO x films on Pt(111) Results: XPS

higher BE peak Ti sourrounded by oxygen O/Pt interface Pt Ti O Pt Ti O O lower BE peak Ti at the interface with the substrate eV eV TiO x films on Pt(111) Results: XPS stacking assignment

Annealing O 2 pressure (Pa) 5x (UHV) ≥2≥2≥2≥2 equivalent monolayer (MLE) k-TiO x z-TiO x z’-TiO x w-TiO x w’-TiO x rect-TiO 2 rect’-TiO 2 Reduced phases Pa TiO x films on Pt(111) analysis: structures and models DFT calculations carried out by A. Fortunelli (Pisa)

k-TiO x TiO x films on Pt(111) analysis: structures and models +1V -1V Pt Ti positive bias a honeycomb habitus (not observed negative bias a kagomé habitus (observed experimentally) Ti 2 O 3 stoichiometry

z-TiO x Pt Ti O Ti 4-fold oxygen coordinated : brighter Ti 3-fold oxygen coordinated : darker TiO x films on Pt(111) analysis: structures and bias Ti 6 O 8 stoichiometry

w-TiO x Ti 4-fold oxygen coordinated : brighter TiO x films on Pt(111) analysis: structures and bias TiO 1.2 stoichiometry

w-TiO x TiO x films on Pt(111) analysis: structures and bias TiO 1.2 stoichiometry Ti 3-fold oxygen coordinated : darker Ti vacancy

Annealing O 2 pressure (Pa) 5x (UHV) ≥2≥2≥2≥2 equivalent monolayer (MLE) epitaxially oriented nanoparticles rect-TiO 2 rect’-TiO 2 k-Ti 2 O 3 w-TiO x z-Ti 6 O 8 x=1.5x=1.33 x=1.2 Evolution of the stoichiometry of the reduced phases with the Ti dose and oxygen pressure TiO x films on Pt(111) general trends z’-Ti 25 O 30 x=1.2

Gold Nanoparticles and catalysis O 2 activation Au nanoparticles over titania seem to be particularly active

experiments are in progress with the deposition of Au clusters on the TiOx/Pt nanophases The ultrathin TiOx films are exploited as possible templates (preferential nucleation at the defects)

k-TiO x z-TiO x rect-TiO 2 rect’-TiO 2 three different phases have been tested Annealing O 2 pressure (Pa) 5x (UHV) ≥2≥2≥2≥2 equivalent monolayer (MLE) z’-TiO x w-TiO x w’-TiO x Au clusters on the TiO x phases templating effect

35 x 35 nm 2 31 x 31 nm 2 200x200nm 2 100x100 nm 2 95x80 nm 2 w’-TiO x z’-TiO x w-TiO x templating effect: long range order

35 x 35 nm 2 31 x 31 nm 2 30 x 14 nm 2 200x200nm 2 100x100 nm 2 95x80 nm 2 w’-TiO x z’-TiO x w-TiO x templating effect: long range order

35 x 35 nm 2 31 x 31 nm 2 200x200nm 2 100x100 nm 2 w’-TiO x z’-TiO x w-TiO x templating effect: size distribution

110x80 nm 2 Au clusters on z’-TiO x.-phase Au clusters form an hexagonal pattern with an average lattice of 1.8 nm FT Annealing in 600 K for 20’ Transformation from z’ to w TiO x phase !

150x120 nm 2 Au clusters on z’-TiO x.-phase: increasing the temperature Further annealing 700 K UHV w-TiO x  w’-TiO x transformation

exposition: first 12L of O 2, second 20L of -155°C No CO 2 desorptions No Catalytic activity of w’-TiOx phase w’-TiOx phase without Au particles reproducible CO °C Catalytic activity of Au particles? w’-TiOx phase with 5’ of Au (~0.16 ML) No CO 2 desorptions No Catalytic activity of Au 2D islands w’-TiOx phase with 5’ of Au (~0.16 ML) after 800K for 15’ Experiments are in progress with 18 O 2 Preliminary tests by using Thermal Programmed Desorption (TPD) on the catalytic conversion of CO  CO low T

Conclusions and perspectives -The understoichiometric TiO x /Pt(111) nanophases are effective templates for growing Au nanoclusters of a very low dimensionality and size dispersion, whose chemistry is still unexplored (studies underway) -The cluster arrays present a large degree of long range order and is stable at relatively high temperatures -We can manipulate an entire array of nanoclusters inducing a cooperative change of their mutual positions by a thermal annealing which determines the change of the template itself -A rich panorama of TiO x nanophases can be obtained by a careful choice of the preparative conditions. -They present a different structural arrangement where a different stoichiometry is connected to a different coordination environment around Ti atoms. -Catalytic tests are in progress to evaluate the dependence of the chemical properties of the Au clusters as a function of their dimensions

Collaboration and acknowledgments Funding: PRIN 2005, EU VI PQ- NMP-Priority Internal Collaborators: Permanent: M. Sambi, A. Vittadini (theory), G. Andrea Rizzi Non permanent: S. Agnoli, P. Finetti, L. Artiglia Present external collaborations: CNR of Pisa, Italy (A. Fortunelli) Univ. of Brescia(L. Gavioli)