LIGO-G0200XX-00-M LIGO Laboratory1 Modeling the Input Optics using E2E S. Yoshida, R. Dodda, T. Findley, K.Rogillio, and N. Jamal, Southeastern Louisiana.

Slides:



Advertisements
Similar presentations
LIGO - G R 1 HAM SAS Test Plan at LASTI David Ottaway November 2005 LIGO-G Z.
Advertisements

G R LIGO Laboratory1 Advanced LIGO Research and Development David Shoemaker LHO LSC 11 November 2003.
LIGO-G D Suspensions Update: the View from Caltech Phil Willems LIGO/Caltech Livingston LSC Meeting March 17-20, 2003.
Lock Acquisition with Auxiliary Lasers Main Question to be answered for the design : What is the goal of auxiliary lasers ? 1. lock independently the arms.
LIGO-G W Status of LIGO Installation and Commissioning Frederick J. Raab, LIGO Hanford Observatory.
E2E school at LLO1  Han2k »Model of the LHO 2k IFO »Designed for lock acquisition study  SimLIGO1 »Model of all LIGO 1 IFOs »Designed for –noise hunting.
LIGO-G M 1 Conceptual Design Review: Initial LIGO Seismic Isolation System Upgrade Introduction Dennis Coyne April 12, 2002.
LIGO-G0200XX-00-M LIGO Laboratory1 Pre-Isolation Dennis Coyne LIGO Laboratory NSF LIGO Annual Review, at MIT 23 October 2002.
LIGO-G9900XX-00-M LIGO Status and Plans Barry Barish 5 June 2000 Gravitational Waves: A Challenge to Theoretical Astrophysics Trieste, 5-9 June 2000.
Status of the LIGO Project
LIGO-G E LIGO Laboratory1 Simulating the LIGO Laser Phase Change Resulting from Gravitational Waves Simulate GW generation and detection Make.
Investigation of the influence of suspended optic’s motion on LIGO detector sensitivity Sanichiro Yoshida Southeastern Louisiana University.
LIGO-G D partial ADVANCED LIGO1 Development Plan R&D including Design through Final Design Review »for all long lead or high risk subsystems »LIGO.
Measurement of the laser beam profile at PSL to Mode Cleaner interface for the 40 Meter Prototype Interferometer A table of contents 1. Introduction 1.1.
LIGO-G M LIGO Laboratory1 Adv. LIGO Facilities Modifications (FAC) Plans, Schedule, Costs, Team Plan, Schedule Costs Team.
Laser Interferometer Gravitational-wave Observatory1 Characterization of LIGO Input Optics University of Florida Thomas Delker Guido Mueller Malik Rakhmanov.
LIGO-G9900XX-00-M LIGO Status and Plans Barry Barish March 13, 2000.
LIGO-G M April 5, 2006 Interferometer Sensing and Control (ISC) Cost and Schedule Breakout Presentation NSF Review of Advanced LIGO Project Richard.
LIGO-G0200XX-00-M Calculations of OSEM Calibration Error due to Test Mass Flexure Phil Willems April 17, 2007 Calibration telecon.
LIGO-G Z1 E2e modeling of violin mode S. Yoshida Southeastern Louisiana University V. Sannibale M. Barton, and H. Yamamoto Caltech LIGO NSF: PHYS
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
LIGO-G W Status of LIGO Installation and Commissioning Frederick J. Raab, LIGO Hanford Observatory.
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
LIGO-G W Commissioning and Performance of the LIGO Interferometers Reported on behalf of LIGO colleagues by Fred Raab, LIGO Hanford Observatory.
LIGO-G M Management of the LIGO Project Gary Sanders California Institute of Technology Presented to the Committee on Programs and Plans of the.
LIGO-G M 1 Conceptual Design Review: Initial LIGO Seismic Isolation System Upgrade Development, Implementation Plan & Schedule Dennis Coyne April.
G M 1 Advanced LIGO Update David Shoemaker LSC/Virgo MIT July 2007.
Status of LIGO Data Analysis Gabriela González Department of Physics and Astronomy Louisiana State University for the LIGO Scientific Collaboration Dec.
Southeastern Louisiana University / LIGO Livingston 1 Modeling the Input Optics using E2E R. Dodda, T. Findley, N. Jamal, K.Rogillio, and S. Yoshida, Southeastern.
LIGO-G D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.
LIGO- G D The LIGO Instruments Stan Whitcomb NSB Meeting LIGO Livingston Observatory 4 February 2004.
LIGO-G D “First Lock” for the LIGO Detectors 20 October 2000 LIGO Hanford Observatory Stan Whitcomb.
Matt Evans, LSC March 2003 (G E)1 Lock Acquisition in LIGO  Who am I? »Matt Evans »Caltech graduate  What is Lock Acquisition? »The process.
LSC August G Z Gingin High Optical Power Test Facility (AIGO) 1 High Optical Power Test Facility - Status First lock, auto-alignment and.
LSC-March  LIGO End to End simulation  Lock acquisition design »How to increase the threshold velocity under realistic condition »Hanford 2k simulation.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Modeling the Input Optics with e2e T. Findley, S. Yoshida, D. Dubois, N. Jamal, and R. Dodda Southeastern Louisiana University LIGO-G D.
G Z Test Mass Butterfly Modes and Alignment Amber Bullington, Stanford University Warren Johnson, Louisiana State University LIGO Livingston Detector.
MODELING THE CALIBRATED RESPONSE OF THE ADVANCED LIGO DETECTORS Luke Burks 2013 LIGO Caltech SURF Mentors: Alan Weinstein, Jameson Rollins Final Presentation.
Modeling of the Effects of Beam Fluctuations from LIGO’s Input Optics Nafis Jamal Shivanand Sanichiro Yoshida Biplab Bhawal LSC Conference Aug ’05 LIGO-G Z.
LIGO-G D Beam Jitter Estimate at the OMC: Enhanced and Advanced LIGO Vuk Mandic LSC Meeting LSU, 08/14/06.
LSC Meeting at LHO LIGO-G E 1August. 21, 2002 SimLIGO : A New LIGO Simulation Package 1. e2e : overview 2. SimLIGO 3. software, documentations.
Aligning Advanced Detectors L. Barsotti, M. Evans, P. Fritschel LIGO/MIT Understanding Detector Performance and Ground-Based Detector Designs LIGO-G
LIGO-G D Commissioning at Hanford Stan Whitcomb Program Advisory Committee 12 December 2000 LIGO Livingston Observatory.
The Effect of Transverse Shifts on the LIGO Interferometer Doug Fettig - Oregon State University Mentor: Biplab Bhawal.
LIGO-G Z March 2007, LSC meeting, Osamu Miyakawa 1 Osamu Miyakawa Hiroaki Yamamoto March 21, 2006 LSC meeting Modeling of AdLIGO arm lock acquisition.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
Elba Gravitational Wave Adv. Detector Workshop1May 22, 2002 Simulation of LIGO Interferometers 1. End to End simulation 2. Lock acquisition 3. Noise.
LIGO-G v1 Searching for Gravitational Waves from the Coalescence of High Mass Black Hole Binaries 2014 LIGO SURF Summer Seminar August 21 st, 2014.
Progress of Shintake Monitor (ATF2 IP-BSM) KEK site meeting 2008/10/31 Takashi Yamanaka.
LIGO-G D Commissioning P Fritschel LIGO NSF review, 23 October 2002 M.I.T.
G R 2004 Plan Update LIGO Systems meeting 22 Jan 04 dhs.
Yoichi Aso Columbia University, New York, NY, USA University of Tokyo, Tokyo, Japan July 14th th Edoardo Amaldi Conference on Gravitational Waves.
LIGO-G Z1 e2e modeling of seismic isolation S. Yoshida 1 and H. Yamamoto 2 1. Southeastern Louisiana University 2. Caltech LIGO.
Time domain simulation for a FP cavity with AdLIGO parameters on E2E
Time domain simulation for a FP cavity with AdLIGO parameters on E2E
LCGT Seismic Attenuation System LCGT-SAS
Signal recycling R&D at LAL: Influence in Virgo
High Power Test Facility Report David McClelland, Bram Slagmolen, John Jacobs ACIGA LSC Meeting, November 203. LIGO-G Z.
Design of Stable Power-Recycling Cavities
e2e Simulation Techniques in Quantum Microscopy and GW Interferometry
LIGO Detector Commissioning
Status of LIGO Installation and Commissioning
Lock Acquisition Real and Simulated
LIGO Detector Commissioning
LIGO Interferometry CLEO/QELS Joint Symposium on Gravitational Wave Detection, Baltimore, May 24, 2005 Daniel Sigg.
HAM SAS Test Plan at LASTI
Simulating the Advanced LIGO Interferometer Using the Real Control Code Juan F. Castillo.
Lessons Learned from Commissioning of Advanced Detectors
HAM-SAS Mechanics Status of modeling V.Boschi, V. Sannibale.
Presentation transcript:

LIGO-G0200XX-00-M LIGO Laboratory1 Modeling the Input Optics using E2E S. Yoshida, R. Dodda, T. Findley, K.Rogillio, and N. Jamal, Southeastern Louisiana University – Acknowledgement – LIGO Livingston Observatory, SURF 2004, NSF B. Bhawal, M. Evans, V. Sannibale, and H. Yamamoto

LIGO-G0200XX-00-M LIGO Laboratory2 Objectives A simulation model will be very convenient to study the impact of ground motion on the input optics, and on the input beam. Therefore, we seek to do the following: 1. Build an IO box using E2E. 2. Integrate it with the Simligo. 3. Run simulation with realistic ground motion.

LIGO-G0200XX-00-M LIGO Laboratory3 The Process 1.Make an Small Optic Suspension (SOS) box, and validate it. 2.Use the SOS box to damp the motion of an optic when realistic ground motion is given. 3.Create a Mode Cleaner (MC) box, and try to lock the cavity when realistic ground motion is given to the Mode Cleaner optics. 4.Put all the optics ( MCs, SM, and MMTs ) in order, and create the Input Optic (IO) box. 5.Use the IO box in Simligo, and run the simulation for the entire detector.

LIGO-G0200XX-00-M LIGO Laboratory4 Validating SOS – Role of the Table Top motion MC1 Yaw motion using two different schemes Schematic diagram of the SOS box with HAM motion as input

LIGO-G0200XX-00-M LIGO Laboratory5 Calculating table’s Yaw HAM stack box  dt ACCX X in Y in Table u Table v )( 0 )( ),(,),( xktiykti eAtxveAtyu    )( 21  kkk  Table yaw = )},(),({ 2 1 )( txviktyu x v y u       )},(),(){(txvtyuki  HAM table Vibration isolation stacks Accelerometer

LIGO-G0200XX-00-M LIGO Laboratory6 Dependence of k on frequency

LIGO-G0200XX-00-M LIGO Laboratory7 Calculating the suspension point motions of the optics u(x,y)= U - yq v(x,y)= V + xq U: table’s center of mass translational motion V: table’s center of mass translational motion q: table’s yaw motion U V q MMT3 (-0.8, 0.6) (0, 0) MC3 (0.75, -0.05) MC1 (0.75, -0.25) SM (0.75, 0.45) MMT1 (0.1, 0.4)

LIGO-G0200XX-00-M LIGO Laboratory8 MC2 and MC3 MC2 Pend MC2 Yaw MC3 Pend MC3 Yaw

LIGO-G0200XX-00-M LIGO Laboratory9 MC1 pendular motion with local damping

LIGO-G0200XX-00-M LIGO Laboratory10 Mode Cleaner box – Preliminary Results

LIGO-G0200XX-00-M LIGO Laboratory11 IO box with the full Detector box

LIGO-G0200XX-00-M LIGO Laboratory12 Conclusions l HAM table motion estimated from the ACC[XY] DAQ signal l MC1, MC3 local damping optimized l MC box constructed and being tested l Combination of MC and IFO in progress